Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


VTT introduces a new biotechnological method for anti-cancer drug production


Less expensive production method reduces the costs on the consumer and society

VTT Technical Research Centre of Finland and the Belgian institute VIB (Flander Interuniversity Institute for Biotechnology) have developed a new, efficient method for producing plant-derived compounds in cell cultures. Such compounds are for example used for expensive special pharmaceuticals. The new method will provide a more inexpensive and efficient method for producing anti-cancer drugs in the near future.

Isolating pharmaceuticals from plants is difficult due to their extremely low concentrations. Since the raw material is scarce or its chemical production is too difficult or even impossible, the industry currently lacks sufficient methods for producing all of the desired plant-derived pharmaceutical molecules. Some substances can only be isolated from extremely rare plants. The biotechnical method developed by VTT and VIB offers a quick and efficient method for producing these high-value medical compounds in cultivated cells. In the future, the new production method may also offer alternatives to other highly expensive drugs.

Chief Research Scientist Kirsi-Marja Oksman-Caldentey from VTT Biotechnology is leading a project, which purpose is to investigate how these valuable compounds can be produced by modifying cell metabolism. Live plant cells produce complex chemical compounds. By steering the cell metabolism, or metabolic engineering, it is possible to affect the production of the desired high-value compounds. It is also possible to use the new technology to produce totally new compounds. This is the first systematical study whose purpose is to analyse the plant cell biosynthesis, or the entire chain of events leading to the creation of compounds.

Today, one-fourth of all pharmaceuticals are of plant origin, either used as a pure compound or chemically engineered to form appropriate derivatives. These include compounds such as morphine, codeine and several anti-cancer drugs. The plant Catharanthus roseus (Madagaskar Periwinkle) is the source of a compound that is used in the treatment of advanced breast cancer and leukaemia, for example.

The results of VTT’s project are very promising, and currently VTT and VIB are now focusing on how to commercialise the method.

Kirsi-Marja Oksman-Caldentey | alfa
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>