Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


BioCDs could hit No. 1 on doctors’ charts


While-you-wait medical tests that screen patients for thousands of disease markers could be possible with compact-disk technology patented by Purdue University scientists.

Purdue physics professor David Nolte holds a prototype BioCD, which, if developed, could provide quick, inexpensive medical tests that screen patients for thousands of diseases. BioCDs would use a modified version of the technology already in use in standard CD players, but instead of containing digital data, their surfaces would hold molecules that could detect levels of proteins in blood samples. (Purdue News Service photo/Dave Umberger)

A team led by physicist David D. Nolte has pioneered a method of creating analog CDs that can function as inexpensive diagnostic tools for protein detection. Because the concentration of certain proteins in the bloodstream can indicate the onset of many diseases, a cheap and fast method of detecting these biological molecules would be a welcome addition to any doctor’s office. But with current technology, blood samples are sent to laboratories for analysis – a procedure that only screens for a few of the thousands of proteins in the blood and also is costly and time-consuming.

"This technology could revolutionize medical testing," said Nolte, who is a professor of physics in Purdue’s School of Science. "We have patented the concept of a ’bio-optical CD,’ which could be a sensitive and high-speed analog sensor of biomolecules. Technology based on this concept could provide hospitals with a fast, easy way to monitor patient health."

Nolte and some members of his team will be available on Tuesday (May 18) to speak to the media about their work during the Conference on Lasers and Electro Optics (CLEO). Team members include chemistry professor Fred E. Regnier and physics graduate students Manoj Varma and Leilei Peng, all of Purdue.

CDs ordinarily store digital information – such as computer data or music – as billions of tiny "pits" in their surface. These microscopic pits, which represent binary ones or zeroes depending on their size, are etched in concentric tracks circling the midpoint from the inner to the outer edge of a CD.

"It is these pits which we transform into miniature test tubes," Nolte said. "Each pit can hold a trace quantity of a chemical that reacts to a certain protein found in the blood."

Blood contains more than 10,000 proteins that physicians would like to monitor, and Nolte said up to 10,000 tracks on a CD could be paired up with a different protein.

"Each ring of pits, or ’track,’ on the CD could be coated with a different protein," he said. "Once the surface of a BioCD has been exposed to a blood serum sample – which would not need to be larger than a single drop – you could read the disk with laser technology similar to what is found in conventional CD players. Instead of seeing digital data, the laser reader would see how concentrated a given protein had become on each track."

Each pit is only a few micrometers – millionths of a meter – in diameter, but is nevertheless large enough to hold many thousands of individual detector molecules, each of which could pair up with and bond to a single protein molecule. The pits’ capacity, Nolte said, would make the Bio-CDs an analog, rather than merely digital, screening tool.

"Physicians need a device that measures the concentration of proteins, not merely their presence or absence," he said. "Because many detector molecules can theoretically be deposited on the surface of each pit, the CDs should measure concentrations with high sensitivity. If the concentration of a given protein is high, many detector molecules will snag a partner from a sample; if it’s low, only a few will pair up."

The team’s most recent experiments demonstrate a sensitivity of 10 nanograms per milliliter with a selectivity greater than 10,000. These numbers, to be reported for the first time at CLEO, are sufficient to make a working prototype BioCD seeking biologically relevant molecules.

Nolte said the advantages to using BioCDs rather than other nascent detection technology, such as biochips, would be in the number of molecules the disks could screen for, as well as simplicity and price.

"There are many detectors out there, but the most sophisticated systems can cost upwards of $50,000 and do not screen for many proteins comprehensively," he said. "BioCDs, if developed, would make use of existing technology, by and large. CDs and CD drives are very cheap to manufacture, and the changes that would need to be made to transform them into bio-assays are not unreasonable."

Those changes would include exposing the pitted surface of the CD, ordinarily protected by an acrylic coating, and depositing the plethora of detector molecules onto the CD track by track. Despite the promise of BioCDs, however, Nolte said they would not be available on the market anytime soon.

"While in principle they can be developed, significant work will need to be done to refine these techniques sufficiently," he said. "It will be at least 10 years before doctors have Bio-CDs at their disposal, and that assumes everything goes smoothly in the interim."

This research was funded by the National Science Foundation.

Writer: Chad Boutin, (765) 494-2081,
Source: David D. Nolte, (765) 494-3013,
Purdue News Service: (765) 494-2096;

Chad Boutin | Purdue News
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>