Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ADAM: Good enzyme for Alzheimer disease

18.05.2004


A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model



Alzheimer Disease (AD), a progressive neurological disorder, is characterized by the presence of amyloid plaques in the brain. These plaques are comprised of aggregates of amyloid beta-peptides (AB peptides), which are believed to play a central role in disease development. Most strategies to prevent AD have been aimed at reducing the generation of amyloid beta-peptides. This is done by targeting specific enzymes, beta- and gamma-secretase, in the amyloid precursor protein (APP) degradation pathway, which sequentially cleave APP to form the Ab peptide. Falk Fahrenholz and colleagues at the University of Mainz, Germany, now provide evidence that targeting and alternative enzyme, alpha-secretase, might be a useful alternative strategy for reducing AB peptide. In the APP processing pathway, alpha-secretase cleavage of APP generates an alternative breakdown product of the protein that cannot generate AB peptide. Here the researchers use a mouse model deficient in or over expressing the gene ADAM10, which codes for alpha-secretase protein. In these studies, they find that moderate increased expression of ADAM10 in mice reduced AB peptide formation, prevented plaque formation, and, from a functional standpoint provided improvement in both long-term potentiation and cognitive impairment. On the other hand, mice lacking ADAM10 had increased number and size of amyloid plaques. The data here provide evidence that a-secretase might be a useful therapeutic target for AD, and also suggest that impairment of this enzyme might underlie some forms of the disease.

An accompanying commentary by Christian Haas and Stefan F. Lichtenthaler provides details on the APP degradation pathway and places this work and AD in this context.



TITLE: A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model

AUTHOR CONTACT:
Falk Fahrenholz
University of Mainz, Mainz, Germany.
Phone: +49 6131-392-5833; Fax: +49 6131-392-5348; E-mail: bio.chemie@uni-mainz.de

View the PDF of this article at: https://www.the-jci.org/press/20864.pdf

ACCOMPANYING COMMENTARY: Amyloid at the cutting edge: activation of a-secretase prevents amyloidogenesis in an Alzheimer disease mouse model

AUTHOR CONTACT:
Christian Haass
Ludwig-Maximilians-Universitat, Munich, Germany.
Phone: 49-89-5996-471; Fax: 49- 5996-415; E-mail: chaass@pbm.med.uni-muenchen.de

View the PDF of this commentary at: https://www.the-jci.org/press/21746.pdf

Laurie Goodman | EurekAlert!
Further information:
http://www.the-jci.org/press/20864.pdf
http://www.the-jci.org/press/21746.pdf

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>