Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Protein marker predicts possible heart damage after chemotherapy


High levels of troponin I (TNI) protein in the blood helps identify possible heart damage after cancer treatment, according to a report in today’s rapid access issue of Circulation: Journal of the American Heart Association.

The report also suggests that tracking TNI levels can help doctors form a heart disease prevention plan for some chemotherapy patients. "Damage to the heart is one of the most worrisome long-term side effects of high-dose chemotherapy," said lead author Daniela Cardinale, M.D., deputy director of the cardiology unit at the European Institute of Oncology in Milan, Italy. "Therefore, it is important to identify biochemical markers that might indicate which patients are at greatest risk and how severe their heart disease might be."

TNI is a protein present exclusively in heart cells. The TNI blood concentration is a well-established marker of heart muscle injury that’s widely used to diagnose and treat heart attacks and other acute coronary syndromes.

"Our study is the first to clearly show, in an adult population, that the risk of cardiac events in cancer patients can be predicted by evaluating the TNI release pattern after chemotherapy," Cardinale said.

In cancer patients who have had chemotherapy, physicians usually use extensive testing and expensive monitoring equipment to identify which patients may have cardiac toxicity, Cardinale said. These methods "have low sensitivity, poor predictive value and, in some cases, technical limitations. Moreover, these methods identify cardiac damage only when it has already occurred and, in most cases, is not reversible," she said. "Evaluating TNI value after chemotherapy is an easy, non-invasive, low-cost method that allows us to categorize the risk of cardiac events in cancer patients in the three years following chemotherapy."

Researchers took blood samples of 703 cancer patients to measure TNI soon after high-dose chemotherapy and one month later. TNI values higher than 0.08 nanograms per milliliter (ng/mL) were considered TNI "positive," while lower values were TNI "negative." They found that 145 patients (21 percent) were TNI positive right after chemotherapy, and 63 patients (9 percent) were positive immediately after chemotherapy and one month later.

The researchers found no significant reduction in heart function at the three-year follow-up in patients who were TNI negative. These patients had only a 1 percent incidence of cardiac events, such as heart attacks.

In contrast, the cardiac event incidence was 37 percent among the patients who were TNI positive immediately after chemotherapy and 84 percent among those who remained positive a month later.

Cardinale said the study has several important implications for cancer treatment:
  • TNI categorizes heart disease risk early, long before impairment in heart function and symptoms develop, and when many preventive treatments would probably help prevent long-term health effects.

  • TNI could assess and monitor the safety and effectiveness of different treatments.

  • Heart-protective therapies that might limit or prevent the TNI rise after chemotherapy, and heart treatments that interfere with TNI persistence could improve the future heart health of these patients.

"The results of this study provide a rational need for doctors to use this marker to guide them in their cardiac evaluations and treatments of high-dose chemotherapy patients," Cardinale said.

Co-authors are: Maria T. Sandri, M.D.; Alessandro Colombo, M.D.; Nicola Colombo, M.D.; Marina Boeri, M.S.; Giuseppina Lamantia, M.D.; Maurizio Civelli, M.D.; Fedro Peccatori, M.D.; Giovanni Martinelli, M.D.; Cesare Fiorentini, M.D.; and Carlo M. Cipolla, M.D.

Carole Bullock | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>