Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein marker predicts possible heart damage after chemotherapy

18.05.2004


High levels of troponin I (TNI) protein in the blood helps identify possible heart damage after cancer treatment, according to a report in today’s rapid access issue of Circulation: Journal of the American Heart Association.



The report also suggests that tracking TNI levels can help doctors form a heart disease prevention plan for some chemotherapy patients. "Damage to the heart is one of the most worrisome long-term side effects of high-dose chemotherapy," said lead author Daniela Cardinale, M.D., deputy director of the cardiology unit at the European Institute of Oncology in Milan, Italy. "Therefore, it is important to identify biochemical markers that might indicate which patients are at greatest risk and how severe their heart disease might be."

TNI is a protein present exclusively in heart cells. The TNI blood concentration is a well-established marker of heart muscle injury that’s widely used to diagnose and treat heart attacks and other acute coronary syndromes.


"Our study is the first to clearly show, in an adult population, that the risk of cardiac events in cancer patients can be predicted by evaluating the TNI release pattern after chemotherapy," Cardinale said.

In cancer patients who have had chemotherapy, physicians usually use extensive testing and expensive monitoring equipment to identify which patients may have cardiac toxicity, Cardinale said. These methods "have low sensitivity, poor predictive value and, in some cases, technical limitations. Moreover, these methods identify cardiac damage only when it has already occurred and, in most cases, is not reversible," she said. "Evaluating TNI value after chemotherapy is an easy, non-invasive, low-cost method that allows us to categorize the risk of cardiac events in cancer patients in the three years following chemotherapy."

Researchers took blood samples of 703 cancer patients to measure TNI soon after high-dose chemotherapy and one month later. TNI values higher than 0.08 nanograms per milliliter (ng/mL) were considered TNI "positive," while lower values were TNI "negative." They found that 145 patients (21 percent) were TNI positive right after chemotherapy, and 63 patients (9 percent) were positive immediately after chemotherapy and one month later.

The researchers found no significant reduction in heart function at the three-year follow-up in patients who were TNI negative. These patients had only a 1 percent incidence of cardiac events, such as heart attacks.

In contrast, the cardiac event incidence was 37 percent among the patients who were TNI positive immediately after chemotherapy and 84 percent among those who remained positive a month later.

Cardinale said the study has several important implications for cancer treatment:
  • TNI categorizes heart disease risk early, long before impairment in heart function and symptoms develop, and when many preventive treatments would probably help prevent long-term health effects.

  • TNI could assess and monitor the safety and effectiveness of different treatments.

  • Heart-protective therapies that might limit or prevent the TNI rise after chemotherapy, and heart treatments that interfere with TNI persistence could improve the future heart health of these patients.

"The results of this study provide a rational need for doctors to use this marker to guide them in their cardiac evaluations and treatments of high-dose chemotherapy patients," Cardinale said.

Co-authors are: Maria T. Sandri, M.D.; Alessandro Colombo, M.D.; Nicola Colombo, M.D.; Marina Boeri, M.S.; Giuseppina Lamantia, M.D.; Maurizio Civelli, M.D.; Fedro Peccatori, M.D.; Giovanni Martinelli, M.D.; Cesare Fiorentini, M.D.; and Carlo M. Cipolla, M.D.

Carole Bullock | EurekAlert!
Further information:
http://www.americanheart.org/

More articles from Health and Medicine:

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>