Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein marker predicts possible heart damage after chemotherapy

18.05.2004


High levels of troponin I (TNI) protein in the blood helps identify possible heart damage after cancer treatment, according to a report in today’s rapid access issue of Circulation: Journal of the American Heart Association.



The report also suggests that tracking TNI levels can help doctors form a heart disease prevention plan for some chemotherapy patients. "Damage to the heart is one of the most worrisome long-term side effects of high-dose chemotherapy," said lead author Daniela Cardinale, M.D., deputy director of the cardiology unit at the European Institute of Oncology in Milan, Italy. "Therefore, it is important to identify biochemical markers that might indicate which patients are at greatest risk and how severe their heart disease might be."

TNI is a protein present exclusively in heart cells. The TNI blood concentration is a well-established marker of heart muscle injury that’s widely used to diagnose and treat heart attacks and other acute coronary syndromes.


"Our study is the first to clearly show, in an adult population, that the risk of cardiac events in cancer patients can be predicted by evaluating the TNI release pattern after chemotherapy," Cardinale said.

In cancer patients who have had chemotherapy, physicians usually use extensive testing and expensive monitoring equipment to identify which patients may have cardiac toxicity, Cardinale said. These methods "have low sensitivity, poor predictive value and, in some cases, technical limitations. Moreover, these methods identify cardiac damage only when it has already occurred and, in most cases, is not reversible," she said. "Evaluating TNI value after chemotherapy is an easy, non-invasive, low-cost method that allows us to categorize the risk of cardiac events in cancer patients in the three years following chemotherapy."

Researchers took blood samples of 703 cancer patients to measure TNI soon after high-dose chemotherapy and one month later. TNI values higher than 0.08 nanograms per milliliter (ng/mL) were considered TNI "positive," while lower values were TNI "negative." They found that 145 patients (21 percent) were TNI positive right after chemotherapy, and 63 patients (9 percent) were positive immediately after chemotherapy and one month later.

The researchers found no significant reduction in heart function at the three-year follow-up in patients who were TNI negative. These patients had only a 1 percent incidence of cardiac events, such as heart attacks.

In contrast, the cardiac event incidence was 37 percent among the patients who were TNI positive immediately after chemotherapy and 84 percent among those who remained positive a month later.

Cardinale said the study has several important implications for cancer treatment:
  • TNI categorizes heart disease risk early, long before impairment in heart function and symptoms develop, and when many preventive treatments would probably help prevent long-term health effects.

  • TNI could assess and monitor the safety and effectiveness of different treatments.

  • Heart-protective therapies that might limit or prevent the TNI rise after chemotherapy, and heart treatments that interfere with TNI persistence could improve the future heart health of these patients.

"The results of this study provide a rational need for doctors to use this marker to guide them in their cardiac evaluations and treatments of high-dose chemotherapy patients," Cardinale said.

Co-authors are: Maria T. Sandri, M.D.; Alessandro Colombo, M.D.; Nicola Colombo, M.D.; Marina Boeri, M.S.; Giuseppina Lamantia, M.D.; Maurizio Civelli, M.D.; Fedro Peccatori, M.D.; Giovanni Martinelli, M.D.; Cesare Fiorentini, M.D.; and Carlo M. Cipolla, M.D.

Carole Bullock | EurekAlert!
Further information:
http://www.americanheart.org/

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>