Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new way to kill cancer: SLU research shows viruses can destroy lung, colon tumors

17.05.2004


Research published this month: Healthy tissue left intact in pre-clinical testing



A genetically engineered virus can selectively kill cancerous cells in the lung and colon while leaving healthy cells intact, according to new research published today in Cancer Research by William Wold and colleagues at Saint Louis University School of Medicine.

The research could lead to a new class of cancer therapies that selectively kill cancer cells.


"These engineered viruses kill cancer cells through a mechanism that is completely different from chemotherapy or radiation," said Dr. William Wold, chair of the department of molecular microbiology and immunology at Saint Louis University School of Medicine. "These viruses have the potential to treat many cancers that are resistant to currently available therapeutics. It also may be possible to use these viruses in combination with other therapies to create novel treatment regimens."

Dr. Wold and his colleagues Karoly Toth, Konstantin Doronin, Ann E. Tollefson, Mohan Kuppuswamy, Baoling Ying, Jacqueline Spencer, and Maria Thomas have been researching for many years ways to convert the relatively benign "adenovirus" that causes symptoms similar to the common cold in children into an anti-cancer drug that attacks and destroys cancerous cells.

Wold’s group has developed several new "adenovirus cancer gene therapy vectors," changing these genes so the virus will attack cancer cells.

"Some of our vectors are designed to destroy many different types of cancers, others are designed to be specific to colon or lung cancer. In preclinical testing these vectors were highly effective against cancerous tumors and did not harm normal tissues."

The new research reported today in Cancer Research involves INGN 007 (VRX-007) and INGN 009 (VRX-009), two novel "oncolytic adenoviruses" that have been engineered to kill cancer cells via viral replication. These viruses can be engineered so that they are active in specific types of cancer cells. The data published today indicate that both efficiently killed cancer cells in culture. Specifically:

INGN 009, which has been designed to kill cells that carry a mutation common in many colon cancers, efficiently killed cultured colon cancer cells, but not lung cancer cells.

INGN 007 effectively killed both types of cancer cells. In an animal model of colon cancer, injection of either INGN 007 or INGN 009 into tumors suppressed tumor growth more efficiently than a negative control (five-fold and ten-fold suppression, respectively).

INGN 007 also completely suppressed tumor growth in a lung cancer model of disease.
Louis Zumstein, Ph.D., director of research at Introgen Therapeutics Inc., which has licensed rights to these oncolytic viruses and other related technologies, said: "These preclinical data are very promising, and support our belief that oncolytic adenoviruses have enormous potential as a new class of cancer therapies that may provide potent and selective killing of cancer cells. These data also illustrate the flexibility of engineered oncolytic adenoviruses to target selected tumor types with great specificity."

A U.S. patent (No. 6,627,190) for this technology was awarded last year to Dr. Wold and his team of researchers. Introgen and VirRx, a biotechnology company founded by Wold and with a primary interest in cancer gene therapy, are collaborating on new therapies for cancer and other diseases. Introgen is a leading developer of biopharmaceutical products that use non-integrating genes to produce a therapeutic protein to treat cancer and other diseases. Introgen maintains integrated research, development, manufacturing, clinical and regulatory departments and operates a commercial- scale, CGMP manufacturing facility.


Established in 1836, Saint Louis University School of Medicine has the distinction of awarding the first M.D. degree west of the Mississippi River. Saint Louis University School of Medicine is a pioneer in geriatric medicine, organ transplantation, chronic disease prevention, cardiovascular disease, neurosciences and vaccine research, among others. The School of Medicine trains physicians and biomedical scientists, conducts medical research, and provides health services on a local, national and international level.

Joe Muehlenkamp | EurekAlert!
Further information:
http://www.slu.edu/

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>