Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new way to kill cancer: SLU research shows viruses can destroy lung, colon tumors

17.05.2004


Research published this month: Healthy tissue left intact in pre-clinical testing



A genetically engineered virus can selectively kill cancerous cells in the lung and colon while leaving healthy cells intact, according to new research published today in Cancer Research by William Wold and colleagues at Saint Louis University School of Medicine.

The research could lead to a new class of cancer therapies that selectively kill cancer cells.


"These engineered viruses kill cancer cells through a mechanism that is completely different from chemotherapy or radiation," said Dr. William Wold, chair of the department of molecular microbiology and immunology at Saint Louis University School of Medicine. "These viruses have the potential to treat many cancers that are resistant to currently available therapeutics. It also may be possible to use these viruses in combination with other therapies to create novel treatment regimens."

Dr. Wold and his colleagues Karoly Toth, Konstantin Doronin, Ann E. Tollefson, Mohan Kuppuswamy, Baoling Ying, Jacqueline Spencer, and Maria Thomas have been researching for many years ways to convert the relatively benign "adenovirus" that causes symptoms similar to the common cold in children into an anti-cancer drug that attacks and destroys cancerous cells.

Wold’s group has developed several new "adenovirus cancer gene therapy vectors," changing these genes so the virus will attack cancer cells.

"Some of our vectors are designed to destroy many different types of cancers, others are designed to be specific to colon or lung cancer. In preclinical testing these vectors were highly effective against cancerous tumors and did not harm normal tissues."

The new research reported today in Cancer Research involves INGN 007 (VRX-007) and INGN 009 (VRX-009), two novel "oncolytic adenoviruses" that have been engineered to kill cancer cells via viral replication. These viruses can be engineered so that they are active in specific types of cancer cells. The data published today indicate that both efficiently killed cancer cells in culture. Specifically:

INGN 009, which has been designed to kill cells that carry a mutation common in many colon cancers, efficiently killed cultured colon cancer cells, but not lung cancer cells.

INGN 007 effectively killed both types of cancer cells. In an animal model of colon cancer, injection of either INGN 007 or INGN 009 into tumors suppressed tumor growth more efficiently than a negative control (five-fold and ten-fold suppression, respectively).

INGN 007 also completely suppressed tumor growth in a lung cancer model of disease.
Louis Zumstein, Ph.D., director of research at Introgen Therapeutics Inc., which has licensed rights to these oncolytic viruses and other related technologies, said: "These preclinical data are very promising, and support our belief that oncolytic adenoviruses have enormous potential as a new class of cancer therapies that may provide potent and selective killing of cancer cells. These data also illustrate the flexibility of engineered oncolytic adenoviruses to target selected tumor types with great specificity."

A U.S. patent (No. 6,627,190) for this technology was awarded last year to Dr. Wold and his team of researchers. Introgen and VirRx, a biotechnology company founded by Wold and with a primary interest in cancer gene therapy, are collaborating on new therapies for cancer and other diseases. Introgen is a leading developer of biopharmaceutical products that use non-integrating genes to produce a therapeutic protein to treat cancer and other diseases. Introgen maintains integrated research, development, manufacturing, clinical and regulatory departments and operates a commercial- scale, CGMP manufacturing facility.


Established in 1836, Saint Louis University School of Medicine has the distinction of awarding the first M.D. degree west of the Mississippi River. Saint Louis University School of Medicine is a pioneer in geriatric medicine, organ transplantation, chronic disease prevention, cardiovascular disease, neurosciences and vaccine research, among others. The School of Medicine trains physicians and biomedical scientists, conducts medical research, and provides health services on a local, national and international level.

Joe Muehlenkamp | EurekAlert!
Further information:
http://www.slu.edu/

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>