Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new way to kill cancer: SLU research shows viruses can destroy lung, colon tumors

17.05.2004


Research published this month: Healthy tissue left intact in pre-clinical testing



A genetically engineered virus can selectively kill cancerous cells in the lung and colon while leaving healthy cells intact, according to new research published today in Cancer Research by William Wold and colleagues at Saint Louis University School of Medicine.

The research could lead to a new class of cancer therapies that selectively kill cancer cells.


"These engineered viruses kill cancer cells through a mechanism that is completely different from chemotherapy or radiation," said Dr. William Wold, chair of the department of molecular microbiology and immunology at Saint Louis University School of Medicine. "These viruses have the potential to treat many cancers that are resistant to currently available therapeutics. It also may be possible to use these viruses in combination with other therapies to create novel treatment regimens."

Dr. Wold and his colleagues Karoly Toth, Konstantin Doronin, Ann E. Tollefson, Mohan Kuppuswamy, Baoling Ying, Jacqueline Spencer, and Maria Thomas have been researching for many years ways to convert the relatively benign "adenovirus" that causes symptoms similar to the common cold in children into an anti-cancer drug that attacks and destroys cancerous cells.

Wold’s group has developed several new "adenovirus cancer gene therapy vectors," changing these genes so the virus will attack cancer cells.

"Some of our vectors are designed to destroy many different types of cancers, others are designed to be specific to colon or lung cancer. In preclinical testing these vectors were highly effective against cancerous tumors and did not harm normal tissues."

The new research reported today in Cancer Research involves INGN 007 (VRX-007) and INGN 009 (VRX-009), two novel "oncolytic adenoviruses" that have been engineered to kill cancer cells via viral replication. These viruses can be engineered so that they are active in specific types of cancer cells. The data published today indicate that both efficiently killed cancer cells in culture. Specifically:

INGN 009, which has been designed to kill cells that carry a mutation common in many colon cancers, efficiently killed cultured colon cancer cells, but not lung cancer cells.

INGN 007 effectively killed both types of cancer cells. In an animal model of colon cancer, injection of either INGN 007 or INGN 009 into tumors suppressed tumor growth more efficiently than a negative control (five-fold and ten-fold suppression, respectively).

INGN 007 also completely suppressed tumor growth in a lung cancer model of disease.
Louis Zumstein, Ph.D., director of research at Introgen Therapeutics Inc., which has licensed rights to these oncolytic viruses and other related technologies, said: "These preclinical data are very promising, and support our belief that oncolytic adenoviruses have enormous potential as a new class of cancer therapies that may provide potent and selective killing of cancer cells. These data also illustrate the flexibility of engineered oncolytic adenoviruses to target selected tumor types with great specificity."

A U.S. patent (No. 6,627,190) for this technology was awarded last year to Dr. Wold and his team of researchers. Introgen and VirRx, a biotechnology company founded by Wold and with a primary interest in cancer gene therapy, are collaborating on new therapies for cancer and other diseases. Introgen is a leading developer of biopharmaceutical products that use non-integrating genes to produce a therapeutic protein to treat cancer and other diseases. Introgen maintains integrated research, development, manufacturing, clinical and regulatory departments and operates a commercial- scale, CGMP manufacturing facility.


Established in 1836, Saint Louis University School of Medicine has the distinction of awarding the first M.D. degree west of the Mississippi River. Saint Louis University School of Medicine is a pioneer in geriatric medicine, organ transplantation, chronic disease prevention, cardiovascular disease, neurosciences and vaccine research, among others. The School of Medicine trains physicians and biomedical scientists, conducts medical research, and provides health services on a local, national and international level.

Joe Muehlenkamp | EurekAlert!
Further information:
http://www.slu.edu/

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>