Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Nanobodies’ herald a new era in cancer therapy

12.05.2004


Cancer, along with heart and vascular disease, is the major cause of death in the Western world. The first generation of anti-cancer drugs has already saved many lives, but because these medicines are non-specific they also often have severe side effects. Researchers at VIB (the Flanders Interuniversity Institute for Biotechnology) are now developing ‘nanobodies’ − a new generation of drugs consisting of extremely small antibodies that target tumour cells very specifically.



The vast majority of the current medicines for treating tumours − the so-called chemotherapeutics − are seldom specific. Indeed, because a chemotherapy treatment is not only toxic to cancer cells but to the body’s normal cells as well, patients often experience severe side effects. The VIB research team under the direction of Hilde Revets and Patrick De Baetselier (Department of Molecular and Cellular Interactions, Free University of Brussels) is searching − successfully − for new, specific, effective cancer therapies.

For several years now, the leading strategy in the treatment of cancer has been based on the production of antibodies, which are protective substances produced in the organism to defend against intruding foreign bodies − protecting us against infections arising from bacteria and viruses. Antibodies can also react with tumour-specific substances that appear only on the cancer cell membrane. These ingenious antibodies seek out and bind very specifically to the cancer cells. As a result, the tumour is removed in a highly targeted, specific manner. At the moment, ten such medicines are available to patients. But even though these antibody medicines are a good step in the right direction, there is clearly room for improvement. The antibodies that are being used are large proteins that have difficulty penetrating tumours. In addition, their complex structure makes large-scale production very difficult and expensive.


In order to cope with these problems, the VIB researchers are using camel antibodies. Extremely small compared to conventional antibodies, this unique class of antibodies has been renamed ‘nanobodies’. Having all the advantages of the conventional antibodies, nanobodies also have several more important characteristics: they are small and they keep their tumour-specific character. At the same time, they are very stable, soluble proteins that are much easier and less expensive to produce than conventional antibodies. So, researchers have recently begun to evaluate nanobodies as anti-cancer medicines. The first results look promising: in experiments conducted on mice, a tumour with a certain protein on its membrane was successfully counteracted through administration of a nanobody directed against this protein.

To translate these results into a possible application for humans, VIB is collaborating with Ablynx, a company established by VIB and GIMV in 2001 with the aim of marketing the nanobody technology. Today, Ablynx has already developed nanobodies against 16 different therapeutic targets that represent a wide range of diseases in humans. Two of these nanobodies are in the pre-clinical phase and, according to plan, will be ready to be clinically tested next year.

These recent results are a new step toward the development of medicines based on nanobodies. In addition to cancer, other life-threatening diseases − such as certain inflammatory diseases, or heart and vascular diseases − are possibly eligible for a medical treatment with nanobodies.

Ann Van Gysel | alfa
Further information:
http://www.vib.be/

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>