Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

E. coli playing the role of cobra

10.05.2004


Moscow researchers have solved the most challenging problem: they made E. coli synthesize one of the most toxic elements of cobra’s poison. It was no simpler a task than keeping a terrarium. The scientists’ efforts were supported by the Russian Foundation for Basic Research and INTAS.



Natural poisons have always been an attraction for researchers, but it is very hard to study them as poisons are multi-componential and each of them affects cells in its own specific way. Such are alpha-neurotoxins – the most toxic component of cobra’s poison. The development of medicine to cure diseases of the nervous system requires data on the structure and properties of the alpha-neurotoxins and expertise in their behavior at the molecular level. Researchers from the Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences got interested in neurotoxin II which interacts in a specific way with a certain type of the muscular cells receptors . To investigate the effect of the toxin, it is necessary to constantly obtain the required protein – pure and sufficient in quantity. Such tasks are traditionally solved with the help of E. coli: the required gene is forced into it and made working (it is very costly, inconvenient and troublesome to get poison from a snake before each experiment). However, it is practically impossible to obtain alpha-neurotoxin II using such a method, as this protein is unable to fold into its proper shape in the bacterium cell and is very quickly destroyed. But Moscow bioorganic chemists managed to avoid these problems and to obtain a sufficient quantity of stable protein. It was actually no simpler a task than keeping a terrarium.

In order to make E. coli synthesize neurotoxin, it was necessary to obtain the gene of this toxin first. The gene was constructed out of ten DNA pieces having been synthesized in the laboratory. A gene of the E. coli natural protein – thioredoxin – was also included into the construction to stabilize neutrotoxin. After completing its task, thioredoxin should be split off from the produced protein to avoid hanging around the toxin as a redundancy. For this purpose, a special DNA part was inserted between two genes as a kind of a molecular button allowing the subsequent disposal of the redundant piece.


The scientists had to assemble the final construction in several phases and then to correct its structure. But their efforts were paid off. They received a genetically-engineered protein which in accordance with the physico-chemical analysis is identical to the natural neurotoxin. 1 liter of bacterium culture yielded about 6 mg of protein – such quantity is sufficient enough for investigating the interaction of toxin and its mutations with cell receptors. No foreign research team has ever managed to obtain such pure toxin and in such quantity though there was quite a number of attempts. The system has another advantage. If by any chance the modified E. coli ‘escapes’ the laboratory it will not pose any danger. In order to obtain a soluble toxin, bacteria should be grown at 12oC – the temperature which is uncomfortable for them – and then thioredoxin stabilizing the protein should be removed to the conditions non-existent in nature. The researchers are planning to conduct comparative biological tests for two alpha-neurotoxins II – the artificial and natural ones.

| alfa
Further information:
http://www.infomnauka.ru

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>