Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

E. coli playing the role of cobra

10.05.2004


Moscow researchers have solved the most challenging problem: they made E. coli synthesize one of the most toxic elements of cobra’s poison. It was no simpler a task than keeping a terrarium. The scientists’ efforts were supported by the Russian Foundation for Basic Research and INTAS.



Natural poisons have always been an attraction for researchers, but it is very hard to study them as poisons are multi-componential and each of them affects cells in its own specific way. Such are alpha-neurotoxins – the most toxic component of cobra’s poison. The development of medicine to cure diseases of the nervous system requires data on the structure and properties of the alpha-neurotoxins and expertise in their behavior at the molecular level. Researchers from the Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences got interested in neurotoxin II which interacts in a specific way with a certain type of the muscular cells receptors . To investigate the effect of the toxin, it is necessary to constantly obtain the required protein – pure and sufficient in quantity. Such tasks are traditionally solved with the help of E. coli: the required gene is forced into it and made working (it is very costly, inconvenient and troublesome to get poison from a snake before each experiment). However, it is practically impossible to obtain alpha-neurotoxin II using such a method, as this protein is unable to fold into its proper shape in the bacterium cell and is very quickly destroyed. But Moscow bioorganic chemists managed to avoid these problems and to obtain a sufficient quantity of stable protein. It was actually no simpler a task than keeping a terrarium.

In order to make E. coli synthesize neurotoxin, it was necessary to obtain the gene of this toxin first. The gene was constructed out of ten DNA pieces having been synthesized in the laboratory. A gene of the E. coli natural protein – thioredoxin – was also included into the construction to stabilize neutrotoxin. After completing its task, thioredoxin should be split off from the produced protein to avoid hanging around the toxin as a redundancy. For this purpose, a special DNA part was inserted between two genes as a kind of a molecular button allowing the subsequent disposal of the redundant piece.


The scientists had to assemble the final construction in several phases and then to correct its structure. But their efforts were paid off. They received a genetically-engineered protein which in accordance with the physico-chemical analysis is identical to the natural neurotoxin. 1 liter of bacterium culture yielded about 6 mg of protein – such quantity is sufficient enough for investigating the interaction of toxin and its mutations with cell receptors. No foreign research team has ever managed to obtain such pure toxin and in such quantity though there was quite a number of attempts. The system has another advantage. If by any chance the modified E. coli ‘escapes’ the laboratory it will not pose any danger. In order to obtain a soluble toxin, bacteria should be grown at 12oC – the temperature which is uncomfortable for them – and then thioredoxin stabilizing the protein should be removed to the conditions non-existent in nature. The researchers are planning to conduct comparative biological tests for two alpha-neurotoxins II – the artificial and natural ones.

| alfa
Further information:
http://www.infomnauka.ru

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Matabele ants: Travelling faster with detours

22.05.2018 | Life Sciences

Flow of cerebrospinal fluid regulates neural stem cell division

22.05.2018 | Life Sciences

Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>