Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transplant rejection averted by simple light exposure in Stanford animal study

06.05.2004


One of the unfortunate side effects of bone marrow and stem cell transplantation is that the newly implanted cells often stage an internal attack against the patient they’re intended to help. Stanford University School of Medicine researchers now have a better grasp of this phenomenon, known as graft-versus-host disease, or GVHD, and have proposed a possible method of prevention: simple ultraviolet light.



In a new animal study, researchers identified the principal culprit in GVHD: an immune cell in the skin known as a Langerhans cell. These cells normally function as flag posts for the immune system, signaling infection-fighting T-cells to come to a particular site to fight off a virus or bacteria. But in transplants, they do patients a great disservice, alerting T-cells to attack the patient’s own tissues, researchers found.

The researchers were able to effectively eliminate the Langerhans cells in transplanted mice by exposing them to ultraviolet light, giving the animals mild sunburn. Transplanted mice that received this treatment experienced no GVHD while those that didn’t showed severe signs of the disease, said Edgar Engleman, MD, professor of pathology and medicine and senior author of the study.


"The experiment not only provided the proof that these cells cause graft-versus-host disease, but also provides a way of thinking about how you might prevent it," said Engleman, who also directs the Stanford Blood Center. The study appears in the May issue of the journal Nature Medicine.

Bone marrow or stem cell transplants are commonly used to treat patients with cancers of the blood system, such as leukemia, lymphoma or myeloma. Patients first receive radiation treatment to wipe out their defective immune systems, which then are replaced by healthy donor cells.

Sometimes, however, the process fails as GVHD sets in. The effects of the disease are most commonly seen in the skin as a reddish rash or, in more severe cases, as skin that blisters and peels.

The Stanford scientists first suspected that Langerhans cells might have a major role in GVHD after their earlier experiments showed these cells were resistant to radiation and persisted in the skin for a long time, said Miriam Merad, MD, PhD, a former postdoctoral scholar in Engelman’s lab and the first author of the study. The discovery was "shocking," Engleman said, as all other white blood cells have a short half-life and are frequently replaced. The Langerhans cells don’t change unless they’re disturbed in some way, say by inflammation, he said.

The scientists surmised that these cells might linger in the skin of a transplant patient and instigate trouble. Their latest experiments bore this out.

The researchers tested their theory in two different sets of mice. In one group, the animals had their own Langerhans cells intact. When these animals were transplanted, the Langerhans cells triggered a response and the mice developed severe GVHD. In a second group, the scientists replaced the animals’ Langerhans cells with other cells. When these mice underwent transplant, they remained protected from GVHD.

The scientists took it a step further. They exposed the vulnerable mice - those with their own Langerhans cells - to ultraviolet light using a sunlamp. The sun exposure depleted the Langerhans cells and effectively protected the mice from the disease, said Merad, who is now based at the Mount Sinai School of Medicine.

The researchers said the results present a promising option for transplant patients and could be the basis for clinical trials in which patients are exposed to ultraviolet light before treatment.

"What we would do is try to eliminate the host Langerhans cells before the transplant, as we did in the mice," Merad said. She noted that dermatologists now use ultraviolet light to treat some skin diseases, administering it to patients inside a chamber under controlled circumstances to avoid burning.

Engleman said the ultraviolet treatment would have to be carefully administered to patients before bone marrow or stem cell transplantation to avoid harmful side effects. "The trick is deplete the host Langerhans cells in a manner that doesn’t cause other unwanted effects," he said.


Other Stanford researchers in the study include Petra Hoffman, PhD; Erik Ranheim, MD, PhD; Markus G. Manz, MD; Irving Weissman, MD; and Samuel Strober, MD. Other collaborators included Sarah Slaymaker and Israel Charo, MD, PhD, of UCSF; Sergio A. Lira, MD, PhD, of Mount Sinai; and Donald N. Cook, MD, of Duke University.

The study was funded by the National Institutes of Health and by a grant from the Irene Diamond Fund.

Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

Ruthann Richter | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>