Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Transplant rejection averted by simple light exposure in Stanford animal study


One of the unfortunate side effects of bone marrow and stem cell transplantation is that the newly implanted cells often stage an internal attack against the patient they’re intended to help. Stanford University School of Medicine researchers now have a better grasp of this phenomenon, known as graft-versus-host disease, or GVHD, and have proposed a possible method of prevention: simple ultraviolet light.

In a new animal study, researchers identified the principal culprit in GVHD: an immune cell in the skin known as a Langerhans cell. These cells normally function as flag posts for the immune system, signaling infection-fighting T-cells to come to a particular site to fight off a virus or bacteria. But in transplants, they do patients a great disservice, alerting T-cells to attack the patient’s own tissues, researchers found.

The researchers were able to effectively eliminate the Langerhans cells in transplanted mice by exposing them to ultraviolet light, giving the animals mild sunburn. Transplanted mice that received this treatment experienced no GVHD while those that didn’t showed severe signs of the disease, said Edgar Engleman, MD, professor of pathology and medicine and senior author of the study.

"The experiment not only provided the proof that these cells cause graft-versus-host disease, but also provides a way of thinking about how you might prevent it," said Engleman, who also directs the Stanford Blood Center. The study appears in the May issue of the journal Nature Medicine.

Bone marrow or stem cell transplants are commonly used to treat patients with cancers of the blood system, such as leukemia, lymphoma or myeloma. Patients first receive radiation treatment to wipe out their defective immune systems, which then are replaced by healthy donor cells.

Sometimes, however, the process fails as GVHD sets in. The effects of the disease are most commonly seen in the skin as a reddish rash or, in more severe cases, as skin that blisters and peels.

The Stanford scientists first suspected that Langerhans cells might have a major role in GVHD after their earlier experiments showed these cells were resistant to radiation and persisted in the skin for a long time, said Miriam Merad, MD, PhD, a former postdoctoral scholar in Engelman’s lab and the first author of the study. The discovery was "shocking," Engleman said, as all other white blood cells have a short half-life and are frequently replaced. The Langerhans cells don’t change unless they’re disturbed in some way, say by inflammation, he said.

The scientists surmised that these cells might linger in the skin of a transplant patient and instigate trouble. Their latest experiments bore this out.

The researchers tested their theory in two different sets of mice. In one group, the animals had their own Langerhans cells intact. When these animals were transplanted, the Langerhans cells triggered a response and the mice developed severe GVHD. In a second group, the scientists replaced the animals’ Langerhans cells with other cells. When these mice underwent transplant, they remained protected from GVHD.

The scientists took it a step further. They exposed the vulnerable mice - those with their own Langerhans cells - to ultraviolet light using a sunlamp. The sun exposure depleted the Langerhans cells and effectively protected the mice from the disease, said Merad, who is now based at the Mount Sinai School of Medicine.

The researchers said the results present a promising option for transplant patients and could be the basis for clinical trials in which patients are exposed to ultraviolet light before treatment.

"What we would do is try to eliminate the host Langerhans cells before the transplant, as we did in the mice," Merad said. She noted that dermatologists now use ultraviolet light to treat some skin diseases, administering it to patients inside a chamber under controlled circumstances to avoid burning.

Engleman said the ultraviolet treatment would have to be carefully administered to patients before bone marrow or stem cell transplantation to avoid harmful side effects. "The trick is deplete the host Langerhans cells in a manner that doesn’t cause other unwanted effects," he said.

Other Stanford researchers in the study include Petra Hoffman, PhD; Erik Ranheim, MD, PhD; Markus G. Manz, MD; Irving Weissman, MD; and Samuel Strober, MD. Other collaborators included Sarah Slaymaker and Israel Charo, MD, PhD, of UCSF; Sergio A. Lira, MD, PhD, of Mount Sinai; and Donald N. Cook, MD, of Duke University.

The study was funded by the National Institutes of Health and by a grant from the Irene Diamond Fund.

Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at

Ruthann Richter | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>