Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly-described route to cancer solves a mystery in lung cancer

06.05.2004


Researchers at The University of Texas M. D. Anderson Cancer Center are describing an entirely new way by which cells can become cancerous. And they say their finding provides an answer to a mystery in lung and other cancers: why a potent tumor suppressor gene called FUS1 functions as it should, yet none of the protein it produces can be found anywhere in a cancer cell.



In the May issue of Cancer Research, Advances in Brief, the investigators report that protective proteins made by FUS1 are, in fact, normal, but that a critical modification that should take place after they are produced does not - and this renders the proteins inert.

Specifically, they found the defect is in a common cell process known as "myristoylation" that occurs when chains of fatty acids hook on to newly-minted proteins, which allows them to stick to the oily surface of the cell membrane.


In this case, the fatty acids don’t attach on to the FUS1 protein, for reasons that are not understood, and the non-functional proteins are quickly broken apart inside the cell. Without FUS1 protein, cells cannot self destruct if damaged, thus cancer development can proceed unchecked.

This is the first time that myristoylation has been fingered as a potential root cause of cancer, say the researchers.

"Most genetic mechanisms for causing cancer include mutations that make gene products overactive or inactive. That’s not the case here," says the study’s senior author, Lin Ji, Ph.D., assistant professor in the Department of Thoracic & Cardiovascular Surgery Research. "This is a novel mechanism, a completely new way of disabling a tumor suppressor protein."

Loss of functional FUS1 "is certainly one of the earliest changes that occurs in lung cancer, and it likely happens in other cancers, such as breast and kidney, where the gene is known to be a target for inactivation," says co-author Jack Roth, M.D. chair of the Department of Thoracic & Cardiovascular Surgery.

Roth says the study suggests two potential therapeutic strategies. One would be to "reactivate myristoylation in tumor cells to restore their normal function," he says. The other is gene therapy to flood the tumor with active FUS1 genes - a phase I clinical trial currently under way at M. D. Anderson Cancer Center.

In order to design corrective treatments, Roth, Ji, and a team of researchers have been working for years to piece together a picture of what happens to a cell in the earliest stages of lung cancer. For example, they found that the p53 tumor suppressor gene was missing or altered in most lung cancer cells and that the gene could be successfully replaced. Clinical trials of p53 gene therapy have been under way at M. D. Anderson since 1995.

Then, working with John Minna, M.D., and other investigators from the University of Texas Southwestern Medical Center, the investigators found that parts of chromosome 3p (a region known as 3p21.3) are often missing in lung cells at the very beginning of cancer development. "One of two inherited copies of this chromosomal region is missing and we speculate this is a fragile site that breaks easily in response to exposure to cancer causing agents," says Roth. "This is a very early change that we see in stage one cancer, and carcinoma in situ. We also see it in the lung cells of smokers who do not have cancer."

The researchers found that area contains a number of tumor suppressor genes including FUS1 that not only inhibited tumor growth and metastasis, but induced human lung cancer cell death.

Still, people who have lost one copy of their FUS1 gene at 3p21.3 have an active copy on their intact chromosome, but for reasons unknown as yet, the now-described defect in myristoylation occurs, rendering the proteins produced by the remaining FUS1 gene functionally inactive. "Inactivation of FUS1 appears to be a two-hit process, in which one good FUS1 gene is lost, and the other produces tumor suppressor protein that is disabled," says Ji.

The gene therapy trial underway at M. D. Anderson may offer a solution, says Roth. It uses bubbles of fat to encase millions of copies of FUS1 genes, which can be easily absorbed into tumor cells. So far, six patients with metastatic lung cancer have been treated.

Although replacement of the FUS1 gene in tumor cells does not specifically repair myristoylation defects, Roth says that experiments suggest "overexpressing the gene somehow seems to overcomes this problem."

Replacing the FUS1 gene therapeutically at the earliest time possible in patients missing one copy of the 3p21.3 region "may possibly prevent or delay the development of lung tumors," Ji says.


The study was funded primarily by grants from the National Cancer Institute and the National Institutes of Health. Other co-authors include John Minna, M.D., and Masashi Kondo, from UT Southwestern Medical Center, and from M. D. Anderson: Futoshi Uno, M.D., Ph.D., Jiichiro Sasaki M.D., Ph.D., Masahiko Nishizaki M.D., Ph.D., Giovanni Carboni M.D., Kai Xu, and Edward Atkinson, Ph.D.

Julie Penne | EurekAlert!

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>