Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dental pulp cells may hold key to treatment of Parkinson’s disease

05.05.2004


Cells derived from the inside of a tooth might someday prove an effective way to treat the brains of people suffering from Parkinson’s disease



A study in the May 1 issue of the European Journal of Neuroscience shows dental pulp cells provide great support for nerve cells lost in Parkinson’s disease and could be transplanted directly into the affected parts of the brain. The study’s lead author is Christopher Nosrat, an assistant professor of biological and materials sciences at the University of Michigan School of Dentistry.

This is not the first test of stem cells as a therapy for Parkinson’s disease-type illnesses, known as neurodegenerative diseases, but Nosrat noted that it is the first to use post-natal stem cells grown from more readily available tooth pulp in the nervous system.


Using dental pulp has other advantages besides its availability, Nosrat said. The cells produce a host of beneficial "neurotrophic" factors, which promote nerve cell survival.

Parkinson’s disease is characterized by symptoms including tremors of the hands, arms or legs, rigidity of the body and difficulty balancing while standing or walking. Parkinson’s affects nerve cells in the part of the brain called the basal ganglia, which is responsible for control of voluntary movement. An estimated 1 million Americans suffer from Parkinson’s disease, for which there is no cure.

Nosrat’s study involved evaluating the potential of injecting tooth cells into brain cells as a possible cell-based therapy for Parkinson’s. He was testing whether the tooth cells could provide neurotrophic factors to support dying nerve cells and replace dead cells.

Nosrat also has studied dental pulp stem cells as a treatment for spinal cord injuries and said applying that knowledge to treatment of neurodegenerative disease was the next logical step.

He used the same general approach for this Parkinson’s study: researchers extract a tooth and draw cells from the center of the tooth, then culture them in a Petri dish to increase the number of the cells. The cell mixture then contains neuronal precursor cells and cells that produce beneficial neurotrophic factors.

Nosrat emphasized that there is much work to be done before human patients might find relief from Parkinson’s symptoms as a result of this therapy. It is still many years from being tested in people as a possible treatment or cure for neurological disorders.

Previous studies have used other sources for stem cells, and in animal and human studies, most of those cells die when grafted into the brain. Nosrat believes cells drawn from dental pulp are more robust because they also produce the neurotrophic factors, which promote nerve cell survival. Nosrat hopes that by refining the delivery method---by focusing the treatment much more specifically on affected parts of the brain and the co-delivery of neurotrophic factors---he can eventually achieve success.

European Journal of Neuroscience is the official journal for the federation of European neuroscience societies: http://www.blackwellpublishing.com/journal.asp?ref=0953-816X&site=1.

The article is titled "Dental pulp cells provide neurotrophic support for dopaminergic neurons and differentiate into neurons in vitro, implications for tissue engineering and repair in the nervous system."

Nosrat’s co-authors are his wife, Irina Nosrat, Christopher Smith and Patrick Mullally, at the U-M School of Dentistry, and Lars Olson at the Karolinksa Institutet in Stockholm, Sweden.


###
Partial funding for the study came from the National Institute of Dental and Craniofacial Research, part of the National Institutes of Health, as well as from the Michigan Parkinson’s Foundation.

Colleen Newvine | EurekAlert!
Further information:
http://bms.dent.umich.edu/people/nosrat.html
http://www.umich.edu/~newsinfo/Releases/2001/Sep01/r090401.html

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>