Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria: Plasmodium togetherness a strategy for breeding success

03.05.2004


Malaria is a pernicious public health problem in many areas of the world. Sub-Saharan Africa, where cases recorded represent over 90% of the world total, is particularly badly hit. Modelling by IRD scientists has revealed a core feature in the life-cycle of Plasmodium falciparum, the parasite responsible for the disease. Its gametocytes, the pre-gamete sexual forms, aggregate in clusters in human blood capillaries and, once ingested, keep this form until they reach the ideal breeding ground the mosquito’s stomach provides. Conditions there favour encounters, and hence binding, between male and female gametocytes, thereby enhancing the parasite’s fertilization and reproduction capacity. Investigation of this behaviour should yield important information on both the parasite’s transmission to humans and on the way the disease develops.



Malaria, which infects 600 million people in the world and leads annually to 2 million deaths, is the most widespread of infectious diseases. The pathological agent is a microscopic parasite of the Plasmodium genus which develops inside the host’s erythrocytes. Plasmodia go through a series of asexual reproduction cycles before a transition takes place from asexual stages to production of sexual cells, the gametocytes or pre-gametes, in the host blood. The females of Anopheles, the mosquito vector, ingest blood and gametocytes during a nocturnal feed on human skin. The meal reaches the mosquito’s stomach where Plasmodium sexual reproduction takes place. An encounter and subsequent binding between a male and a female gametocyte produces a zygote which will give rise to infectious forms. These migrate up to the mosquito salivary glands. From there they are transmitted to humans during a second blood meal.

Experimental gametocyte counts in the blood ingested by mosquitoes that had bitten volunteers naturally infected with Plasmodium falciparum showed that these sexual forms are overdispersed, in other words they have a heterogeneous distribution in the mosquito stomach. Their numbers vary between the different blood meals taken on the same volunteer, a feature previously observed in the case of large parasites (macroparasites), such as microfilariae (250 microns).


The IRD team is researching Plasmodium biology and the modes of transmission from the vector to humans and from humans to the vector. They used a computerized simulation model (the individual based model) of gametocyte behaviour in human blood circulation and at the moment of ingestion by the mosquitoes, aiming to find an explanation for this heterogeneity and its role in the parasite’s reproduction.

In the microfilariae, nematode agents of filariases, heterogeneity in the number of parasites ingested by the mosquitoes results from queues of varying lengths they form in the capillaries. Thus a similar aggregation event might occur in Plasmodium gametocytes, even if their very small size (10 microns) theoretically predestine them for a homogeneous distribution in the mosquito stomach. Simulations tested this hypothesis, each assuming different quantities of circulating gametocytes. They showed that the heterogeneous distribution of gametocytes ingested by the mosquito is no chance feature but is density-dependent, increasing with the gametocyte density. This heterogeneity could result from gametocyte togetherness, or aggregation, in the blood capillaries, the clusters so formed persisting in the mosquito stomach where sexual reproduction takes place. Field experiments conducted in Senegal, then others in Cameroon, on blood ingested by mosquitoes from naturally infected volunteers have confirmed these results, thus validating the model the research team adopted.

Comparison of the behaviour of free and clustered gametocytes has illuminated an essential life-cycle characteristic of Plasmodium, the most extensively studied malaria parasite. Aggregation is a means of optimizing the zygote (fertilized ova) production, which results from the encounter and binding between two gametocytes of opposite sex, and therefore of enhancing the production of infectious forms and the parasite’s reproduction rate. Bound in the human host’s peripheral capillaries, male and female gametocytes ingested by a mosquito increase the likelihood of their meeting inside the propitious breeding ground the fly’s stomach provides. The gametocytes differentiate into gametes that possess no particular means of attraction, so this lover’s ritual of clustering is a sophisticated parasite reproduction strategy which compensates for its gametes’ lack of attraction mechanism. Further research is planned, with three main objectives: refining the gametocyte behaviour model; finding out the triggering mechanism behind the cell binding events, well known in the asexual forms which cause cerebral malaria; and identifying the factors that influence the cluster formation.


Marie Guillaume – DIC
Traduction : Nicholas Flay

For further information

Contact: Gaston Pichon, IRD - UR 79 GEODES " Géométrie des espaces organisés, dynamiques environnementales et simulations " - 32 av. Henri Varagnat, 93143 Bondy cedex, France. Tel.: 33-1-48-02-5976. Fax: 33-48-47-30-88. Email: Gaston.Pichon@bondy.ird.fr

Contacts IRD Communication: Marie Guillaume (editor), Tel.:33-1-48-03-76-07, Email: guillaum@paris.ird.fr ; Bénédicte Robert (press officer), Tel.: 33-1-48-03-75-19, Email:presse@paris.ird.fr

Reference :
F. O. Gaillard, C. Boudin, N. P. Chau, V. Robert and G. Pichon, 2003 – Togetherness among Plasmodium falciparum gametocytes: interpretation through simulation and consequences for malaria transmission, Parasitology, 127, 427-435.

To obtain illustrations concerning this research Contact Indigo Base, IRD picture library, Claire Lissalde or Danièle Cavanna, Tel.: 33-1-48-03-78-99, Email: indigo@paris.ird.fr

Bénédicte Robert | EurekAlert!
Further information:
http://www.ird.fr/fr/actualites/fiches/2004/fiche194.htm

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>