Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Special incubators allow high-quality imaging of critically ill newborns

03.05.2004


A newly developed, magnetic resonance (MR)-compatible incubator allows radiologists to safely and efficiently obtain quality diagnostic images of sick infants, according to a study appearing in the May issue of the journal Radiology.



"MR imaging is the most desirable imaging test for many newborns because there is no exposure to radiation," said the study’s lead author, Stefan Blüml, Ph.D., associate professor at The Saban Research Institute at Childrens Hospital Los Angeles, and the department of radiology, University of Southern California (USC) Keck School of Medicine. "However, many sick newborns cannot be studied by MR, even when clinically indicated, because of concerns for their safety during transport and during the procedure."

Logistical challenges in providing good diagnostic imaging of newborns are considerable and include monitoring circulation and maintaining constant control of temperature, airflow and humidity. Consequently, few newborns are examined with MR imaging, which is, for many indications, the most accurate non-invasive diagnostic test. Unlike radiography (x-rays) and computed tomography (CT), MR imaging carries no radiation risk.


"The MR-compatible incubator streamlines the MR examinations of newborns and allows the nursing staff to do most of the patient preparation inside the NICU’s (neonate intensive care unit) safe environment," Dr. Blüml said.

The researchers conducted 13 MR imaging studies on neonates to evaluate an MR-compatible incubator with air temperature and humidity regulation and integrated radiofrequency coils. Image quality was superior to images obtained with standard MR equipment. No complications were encountered, vital signs remained normal, and there was little axillary temperature fluctuation.

The customized small coils used with the MR-compatible incubators reduce scan time and improve image resolution. Typically, MR imaging exams of infants are performed with the manufacturer’s one-size-fits-all coils designed for adult heads.

"We found that image quality was far superior to images obtained with standard MR equipment," Dr. Blüml said. "We believe that MR-compatible incubators are beneficial for babies and will be cost efficient in the long run."

Dr. Blüml is hopeful that this new technology will allow more MR studies of newborns, which will result in earlier and improved diagnoses and enable early intervention and treatment. He believes that the incubator’s safe environment will enable more neonatal clinical research.


"MR Imaging of Newborns by Using an MR-compatible Incubator with Integrated Radiofrequency Coils: Initial Experience." Collaborating with Dr. Blüml on this study were Philippe Friedlich, M.D., Stephan Erberich, Ph.D., John C. Wood, M.D., Ph.D., Istvan Seri, M.D., Ph.D., and Marvin D. Nelson, Jr., M.D.

Maureen Morley | EurekAlert!
Further information:
http://radiology.rsnajnls.org
http://www.rsna.org

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>