Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MR Spectroscopy Aids in Distinguishing Recurring Brain Tumors from Similar-Appearing Changes Related to Treatment

03.05.2004


MR spectroscopy may be a useful adjunct to conventional imaging to distinguish recurrent tumor from treatment-related change in the brain such as inflammation or dead cells, says a new study by researchers from the University of Michigan Medical Center in Ann Arbor, MI.



In the study, MR spectroscopy was performed on 27 patients who were previously treated with surgery, chemotherapy and radiation therapy for brain tumor. Results of the study revealed that Choline, Creatine and N-acetylaspartate, specific molecules used as markers for identification of tumors and which can be detected with MR spectroscopy, were all readily quantifiable in each patient, allowing accurate recognition. “MR spectroscopy is a tool that can provide a biochemical thumbprint or profile of the brain, allowing accurate identification of recurrent tumor from benign changes related to chemotherapy or radiation therapy,” said Patrick N. Weybright, MD, lead author of the study.

According to Dr. Weybright, a down side to MR spectroscopy is that it is usually more susceptible to artifacts from nearby bone and fluid, which can make it impossible to identify the molecules. However, he said, by using techniques to suppress the overwhelming signal from water, they were able to achieve multivoxel spectroscopy in 25 of 27 patients with no significant artifacts.


According to the authors, the role MR spectroscopy can play in distinguishing recurrent tumor from tumor-related change is an important one for the patient. “It affects patient lifestyle. Early identification of recurrent tumor can allow earlier implementation of treatment to stop the tumor recurrence, and identification of benign changes related to treatment can prevent unnecessary therapy,” said Dr. Weybright.

Dr. Weybright will present the study on May 3 during the American Roentgen Ray Society Annual Meeting in Miami Beach, FL.

Jason Ocker | ARRS
Further information:
http://www.arrs.org/scriptcontent/pressroom/archive/2004/r040503h.cfm

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>