Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


SMASH Imaging Increases Effectiveness of MRI for Musculoskeletal Imaging


Using simultaneous acquisition of spatial harmonics (SMASH) T2-weighted imaging for knee MRI results in a significant decrease in imaging time, as compared to conventional fat-saturated T2-weighted imaging, without any negative effects on MRI interpretation or patient clinical outcome, says a new study by researchers from the Neuroskeletal Imaging Institute in Melbourne, FL.

According to the study, SMASH imaging, which acquires many pictures at the same time as opposed to traditional imaging techniques that acquire one image at a time, is commonly used in cardiac imaging and other applications where high-resolution fast imaging is needed, but it had not yet been used for musculoskeletal imaging.

For this particular study, the researchers examined MR images of the knee in 50 patients using both SMASH T2-weighted imaging and fat-saturated T2-weighted imaging, a technique that allows better detection of bone marrow abnormalities. They found that using SMASH imaging decreased examination time by more than eight minutes on each knee examination.

“The benefits of this time savings is that patients tolerate the procedure better—there’s no claustrophobia, they can stay relaxed and still. This, in turn, produces less motion on the images, making them easier to interpret,” said Thomas H. Magee, MD, lead author of the study.

Even though this study centered exclusively on the knee, according to Dr. Magee the use of SMASH imaging can impact other areas of musculoskeletal imaging as well. “The findings can be generalized for just about all of musculoskeletal imaging, with the right coil. For instance, besides the knee, we’ve also used SMASH imaging for the shoulder,” Dr. Magee said.

Dr. Magee will present the study on May 3 during the American Roentgen Ray Society Annual Meeting in Miami Beach, FL.

Jason Ocker | ARRS
Further information:

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>