Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme Prevents Lung Damage in Premature Infants

03.05.2004


An enzyme that protects the body from reactive chemicals called free radicals is crucial in preventing the inflammation that causes chronic lung disease in premature infants, according to three new studies.

The findings could lead to improved treatments to alleviate such inflammation, preserving the lungs of premature infants, said Richard Auten, M.D., a neonatalogist and associate professor of pediatrics at Duke University Medical Center. Auten and colleagues from the Medical College of Wisconsin reported their findings in three presentations on May 2 and 3, 2004, at the Pediatric Academic Societies’ annual meeting in San Francisco. The research was sponsored by the American Lung Association and the National Institutes of Health.

In studies with mice, the researchers previously found that infant animals with an extra copy of the gene for the crucial enzyme, called superoxide dismutase, were better able to defend themselves against oxygen-free radicals. Oxygen-free radicals are highly reactive forms of oxygen that can readily combine with and damage proteins and other molecules in body tissues such as the lungs. Superoxide dismutase reacts with oxygen-free radicals, converting them into harmless byproducts.



The free radicals that attack lung cells are produced by white blood cells enlisted by the infant’s immune system, and are not only a result of the oxygenated air breathed in by babies, according to experiments in lung cells conducted by Auten and his colleagues. This damage to lung cells can be partly prevented by turning on the gene which produces superoxide dismutase, the researchers found.

The fragile lungs of premature babies cannot take in enough air to support life, but supplemental oxygen or ventilation can damage delicate, underdeveloped lung tissue, causing inflammation and respiratory distress. Even exposure to normal room air may overwhelm the lungs of a premature infant, Auten said. The damage triggers the infant’s immune system, which sends in a horde of white blood cells that scavenger damaged tissue. But in premature infants, the white blood cells often stay in the lungs too long causing even more damage. The persistent inflammation also delays lung development and robs nutrients from other organs.

"We want to understand how to modify this immune response in a safe way that prevents inflammation but avoids infections and allow normal lung development," Auten said. The key to stopping such inflammation in infant lungs might be superoxide dismutase, he said.

The enzyme may also encourage lung development, Auten and his colleagues found. The transgenic mice with an extra copy of the superoxide dismutase gene had better blood vessel growth in their lungs than normal mice when exposed to a 95 percent oxygen environment for one week.

Inflammation caused by an overactive immune system is not the only source of lung problems for premature infants. Their lungs lack surfactant, a protein that lubricates the lung’s surface cells and help keep small air sacs, called alveoli, open and functioning. Most premature babies also have too few alveoli, which prevents their lungs from fully expanding and taking in enough air. Combined with the need for supplemental oxygen or ventilation, these factors lead to respiratory distress syndrome and chronic lung disease.

Currently, there is no good treatment to stop the cascade of injury in which inflammation meant to heal becomes a biochemical attack on the body’s own tissue. Steroids can alleviate the inflammation, but the drugs can slow brain and lung growth and impair immune function. The average hospital stay for infants who develop chronic lung disease -- stiff, scarred lungs -- is six months, according to the National Institutes of Health.

Auten’s co-authors include Mohamed Ahmed, M.D., fellow, Duke University School of Medicine; Ganesh Konduri, M.D., associate professor of pediatrics, Medical College of Wisconsin; Ann Lee, M.D., fellow, Medical College of Wisconsin; Neil Hogg, Ph.D., associate professor of biophysics, Medical College of Wisconsin; and Rose Verber, research technologist, Medical College of Wisconsin.

Becky Oskin | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7569
http://neonatology.mc.duke.edu/index.htm

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>