Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Enzyme Prevents Lung Damage in Premature Infants


An enzyme that protects the body from reactive chemicals called free radicals is crucial in preventing the inflammation that causes chronic lung disease in premature infants, according to three new studies.

The findings could lead to improved treatments to alleviate such inflammation, preserving the lungs of premature infants, said Richard Auten, M.D., a neonatalogist and associate professor of pediatrics at Duke University Medical Center. Auten and colleagues from the Medical College of Wisconsin reported their findings in three presentations on May 2 and 3, 2004, at the Pediatric Academic Societies’ annual meeting in San Francisco. The research was sponsored by the American Lung Association and the National Institutes of Health.

In studies with mice, the researchers previously found that infant animals with an extra copy of the gene for the crucial enzyme, called superoxide dismutase, were better able to defend themselves against oxygen-free radicals. Oxygen-free radicals are highly reactive forms of oxygen that can readily combine with and damage proteins and other molecules in body tissues such as the lungs. Superoxide dismutase reacts with oxygen-free radicals, converting them into harmless byproducts.

The free radicals that attack lung cells are produced by white blood cells enlisted by the infant’s immune system, and are not only a result of the oxygenated air breathed in by babies, according to experiments in lung cells conducted by Auten and his colleagues. This damage to lung cells can be partly prevented by turning on the gene which produces superoxide dismutase, the researchers found.

The fragile lungs of premature babies cannot take in enough air to support life, but supplemental oxygen or ventilation can damage delicate, underdeveloped lung tissue, causing inflammation and respiratory distress. Even exposure to normal room air may overwhelm the lungs of a premature infant, Auten said. The damage triggers the infant’s immune system, which sends in a horde of white blood cells that scavenger damaged tissue. But in premature infants, the white blood cells often stay in the lungs too long causing even more damage. The persistent inflammation also delays lung development and robs nutrients from other organs.

"We want to understand how to modify this immune response in a safe way that prevents inflammation but avoids infections and allow normal lung development," Auten said. The key to stopping such inflammation in infant lungs might be superoxide dismutase, he said.

The enzyme may also encourage lung development, Auten and his colleagues found. The transgenic mice with an extra copy of the superoxide dismutase gene had better blood vessel growth in their lungs than normal mice when exposed to a 95 percent oxygen environment for one week.

Inflammation caused by an overactive immune system is not the only source of lung problems for premature infants. Their lungs lack surfactant, a protein that lubricates the lung’s surface cells and help keep small air sacs, called alveoli, open and functioning. Most premature babies also have too few alveoli, which prevents their lungs from fully expanding and taking in enough air. Combined with the need for supplemental oxygen or ventilation, these factors lead to respiratory distress syndrome and chronic lung disease.

Currently, there is no good treatment to stop the cascade of injury in which inflammation meant to heal becomes a biochemical attack on the body’s own tissue. Steroids can alleviate the inflammation, but the drugs can slow brain and lung growth and impair immune function. The average hospital stay for infants who develop chronic lung disease -- stiff, scarred lungs -- is six months, according to the National Institutes of Health.

Auten’s co-authors include Mohamed Ahmed, M.D., fellow, Duke University School of Medicine; Ganesh Konduri, M.D., associate professor of pediatrics, Medical College of Wisconsin; Ann Lee, M.D., fellow, Medical College of Wisconsin; Neil Hogg, Ph.D., associate professor of biophysics, Medical College of Wisconsin; and Rose Verber, research technologist, Medical College of Wisconsin.

Becky Oskin | dukemed news
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>