Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alternative / supplemental breast imaging methods tested

03.05.2004


Dartmouth physicians and engineers are collaborating to test three new imaging techniques to find breast abnormalities, including cancer. Results from the first stage of their research, information about the electro-magnetic characteristics of healthy breast tissue, appears in the May 2004 issue of Radiology, the journal of the Radiological Society of North America.



The interdisciplinary team, which includes researchers from Dartmouth’s Thayer School of Engineering and Dartmouth Medical School working with experts at the Norris Cotton Cancer Center and the Department of Radiology at Dartmouth-Hitchcock Medical Center (DHMC), is developing and testing imaging techniques to learn about breast tissue structure and behavior. The techniques are electrical impedance spectral imaging (EIS), microwave imaging spectroscopy (MIS), and near infrared (NIR) spectral imaging.

"This study offers the foundation for future research and clinical trials," says Steven Poplack, associate professor of radiology and OB/GYN at Dartmouth Medical School, doctor of diagnostic radiology and Co-Director for Breast Imaging/Mammography at DHMC, and the lead author of the paper. "We’re establishing normal ranges for healthy breast tissue characteristics in order to more easily recognize the abnormalities."


The study of 23 healthy women offers baseline data from the three techniques. The methods are not invasive or particularly uncomfortable for participants, and they all provide detailed information about different properties of breast tissue.

* EIS: This painless test uses a very low voltage electrode system to examine how the breast tissue conducts and stores electricity. Living cell membranes carry an electric potential that affect the way a current flows, and different cancer cells have different electrical characteristics.

* MIS: This exam involves the propagation of very low levels (1000 times less than a cell phone) of microwave energy through breast tissue to measure electrical properties. This technique is particularly sensitive to water. Generally, tumors have been found to have more water and blood than regular tissue.

* NIR: Infrared light is sensitive to blood, so by sending infrared light through breast tissue with a fiber optic array, the researchers are able to locate and quantify regions of oxygenated and deoxygenated hemoglobin. This might help detect early tumor growth and characterize the stage of a tumor by learning about its vascular makeup.


Keith D. Paulsen, Professor of Engineering and a co-author of the study, is the principal investigator of this research program, which is funded by the National Cancer Institute. Other authors on the paper include Alexander Hartov, Paul M. Meaney, Brian W. Pogue, Tor D. Tosteson, Margaret R. Grove, Sandra K. Soho, and Wendy A. Wells, all associated with Dartmouth’s Thayer School of Engineering or Dartmouth Medical School.

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu/

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>