Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Grow Your Own Teeth

03.05.2004


People who have lost or damaged teeth could soon be growing their own, thanks to a major scientific breakthrough by a start-up, Odontis Ltd, formed by King’s College, London. An investment of £400,000 from NESTA (the National Endowment for Science, Technology and the Arts) – the organisation that nurtures UK creativity and innovation and the Wellcome Trust biomedial research charity, will enable the company to move onto the next stage of development.



Damaged or missing teeth are a large and significant problem with dentures, bridges or synthetic implants being the only treatment currently available. These methods are often invasive and surgically traumatic.

Odontis’ pioneering technology will allow the patient to grow his or her own natural replacement teeth instead of having a synthetic implant. As well as the benefit of not experiencing surgical trauma, there is also the psychological boost of ‘having one’s own teeth’.


The project is the brainchild of genetic research scientist, Professor Paul Sharpe, who is currently the Head of Division of Craniofacial Biology and Biomaterials of the Dental Institute, Kings College London. His discovery is based on human stem cell technology.

Stem cells are taken from the patient, treated and cultured in a laboratory, then re-implanted in the patient’s jaw under the gum at the site of the missing or extracted tooth. This then grows into a fully-formed, live tooth in the same way that teeth develop naturally.

To date, no companies or research groups in the world have been able to demonstrate the formation of a living, natural tooth.

In both the US and UK, adults aged over 50 lose on average 12 teeth, including four wisdom molars, from a full complement of 32 teeth. Lost teeth can lead to problems with health, nutrition and appearance.

On receiving NESTA’s investment, Professor Sharpe says: “We are delighted to receive this investment from NESTA and the Wellcome Trust. It will be a major help in taking the technology forward which will be eventually used on patients.”

The project is receiving a total investment of £500,000: £100,000 from NESTA, £300,000 University Translation Award from the Wellcome Trust and £100,000 from a business angel. Kinetique Biomedical Seed Fund has already invested £250,000 in the proof of concept phase.

Professor Sharpe, adds: “A key medical advantage of our technology is that a living tooth can preserve the health of the surrounding tissues much better than artificial prosthesis. Teeth are living, and they are able to respond to a person’s bite. They move, and in doing so they maintain the health of the surrounding gums and teeth.”

Mark White, NESTA Invention and Innovation Director, says: “Odontis have come up with a dental method that is highly innovative and pioneering in its approach. We hope that our seed investment will bring about a major success story for UK the research and science community.”

Hannah Daws | alfa
Further information:
http://www.nesta.org.uk

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>