Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell Therapy for Parkinson’s Disease

29.04.2004


According to research work at the University Hospital, cell therapy could improve many of the motor deficits of patients with Parkinson’s Disease.



With Parkinson’s a degeneration of cell groups takes place and so, from a conceptual perspective, the perfect treatment would be to replace the cells lost. The big drawback in the search for a suitable cell is to find one that survives for a lengthy period within the brain, that integrates well into the brain structures in order to comply with a series of functions and one that is not rejected by the organism of the patient.

At the University Hospital a line of investigation is being carried out that is based on experimenting with stem cells having the ability to transform themselves into neurones and incorporate themselves into the brain. Two types of cells are currently being tested: one type consists of adult bone marrow stem cells. The aim is to obtain dopaminergic neurones from adult bone marrow stem cells. The next step will be to test to see if these neurones are able, once implanted in the brain, to ameliorate Parkinsonian symptoms in animals.


Motor system recovery

The second source of donor cells is cell cultures from the carotid body. That research was initiated five years ago in animals which had carotid body cell aggregates implanted in the brain. The programme running tests on twelve macaco monkeys (of the Cebidae family) is now coming to an end and it has been shown that motor recovery has been maintained over a period of twelve months. These animals show a moderate improvement in Parkinsonian symptoms, and efforts have thus been centred on achieving enhanced motor performance. This is why these cells are being cultured and isolated in order to effect motor recovery on implantation into the brain. Laboratory data suggest that there exists a population of immature neural cells that grow very well in cell cultures and can serve as an efficacious source for their implantation.

The next stage will be to know if these cells cultivated in the carotid body of animals also exist in the human carotid body. If it turns out that that both cellular types have the same characteristics and there is a good response at an experimental level, the treatment can be transferred to humans.


But it should be made clear that the lines of investigation in cellular therapy are not directed at curing the disease but that, in some patients, it can be observed that clinical improvement can be superior to that achieved with other, alternative treatments. Although not attempting a cure for the ailment, it is possible to improve many of the motor deficits of the patients and even reverse the illness to more initial stages. However, until what causes the disease is known, it cannot be cured.


Contact :
Garazi Andonegi
ELHUYAR Fundazioa
garazi@elhuyar.com
(+34) 943363040

Garazi Andonegi | Basque research
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=458&hizk=I
http://www.unav.es/cun

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>