Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electronic nose device proves effective for diagnosing pneumonia and sinusitis

29.04.2004


Penn researchers show effectiveness of device in analyzing gases exhaled from the nose to determine presence of common bacterial infections



Researchers at the University of Pennsylvania School of Medicine have recently completed three studies – the most comprehensive and largest to date – that demonstrate the effectiveness of an electronic nose device for diagnosing common respiratory infections, specifically pneumonia and sinusitis. Doctors hope that the device – called the Cyranose 320, or e-nose – will provide a faster, more cost-effective and easier-to-use method for accurately diagnosing pneumonia and, as a result, help reduce over-prescription of antibiotics. Their initial findings will be presented at the combined annual meetings of otorhinolaryngology (ear, nose and throat) experts – the Triologic Society and the American Broncho-Esophagological Association – on April 30th, 2004, in Phoenix, Arizona.
"Pneumonia is a serious bacterial infection that can cause serious injury or even death; indeed, it remains a leading cause of death in intensive care units (ICUs)," said lead author of the first study, C. William Hanson III, MD, Professor of Anesthesia and board-certified expert in critical care medicine. "Treating this illness is complicated because there are many kinds of pneumonia, and it can be commonly misdiagnosed in the ICU and confused with other diseases which cannot be treated using antibiotics. This is a leading cause of the overuse – through over-prescription – of antibiotics for false cases of pneumonia."

The first two studies looked at pneumonia cases among patients who are on ventilators in the surgical intensive care unit (SICU). Here, diagnosis is made difficult by the patients’ limited ability to move, and they are vulnerable to infections from other compounding injuries. In the first study, researchers found that the e-nose effectively diagnosed 92 percent of pneumonia cases among 25 patients, as confirmed by computed tomography (CT) scans of the lungs. It successfully distinguished 13 positive cases from 12 other patients who did not have pneumonia. Similarly, in the second study, researchers found the e-nose effective in providing accurate diagnoses of pneumonia in 31 of 44 SICU patients (70 percent).



One quarter of ventilated SICU patients develop pneumonia – a serious complication that can threaten the patient’s life, requires immediate treatment with antibiotics, and also increases their hospital stay three-fold, with average additional hospital costs of $11,000 per patient.

The third study looked at sinusitis, the most common diagnosis from respiratory complaints by patients in outpatient clinics. The e-nose was effective at diagnosing 82 percent of sinusitis cases among 22 patients, one half infected and the other half not so.

All bacteria, as living organisms, produce unique arrays or mixtures of exhaled gases. The e-nose works by comparing "smellprints" from a patient’s breath sample to standardized, or known, readings stored on a computer chip. These "smellprints" are created from both electro-chemical and mathematical analysis of exhaled gases contained in a breath sample. Upon analysis, identifiable patterns emerge, and a patient’s "smellprint" can tell a physician whether or not bacteria are present and, if so, what kind. This can aid not just in the accuracy of diagnosis, but can also help physicians select the most effective antibiotic for treatment.

"The results confirm that exhaled breath can be analyzed for pneumonia and sinusitis using a commercially available e-nose device," said lead investigator for the sinusitis study and co-investigator for the pneumonia studies, Erica Thaler, MD, an Associate Professor of Otorhinolaryngology: Head and Neck Surgery at Penn. "There is the potential with this device to radically change and improve the way we diagnose and treat both conditions – for which there is no gold-standard test. And, given that we can apply this sensory analysis to the detection of pneumonia and sinusitis, then, hopefully, it can be applied to common bacterial infections of the upper respiratory tract."

The e-nose is also being studied for its possible use in diagnosing many other illnesses, including: lung cancer, kidney disease and cirrhosis of the liver, otitis media (middle ear infections) in children, or even detection of chemicals and biological agents. Manufactured by Smiths Detection of Pasadena, CA, the machines cost approximately $8,000 USD, and still require approval from the federal Food and Drug Administration before they can be widely used. Breath samples are taken with a hand-held sensor – about the size of child’s video game player – connected to a standard oxygen mask with cup, as the patient breathes normally. Readings are displayed by connecting the device to a laptop computer.

"Flexibility and ease-of-use are the greatest advantages of the e-nose," said lead researcher Neil Hockstein, MD, a clinical instructor and Penn otorhinolaryngologist. "They are miniaturized devices, provide quick results, are relatively inexpensive, non-invasive, safe for patients and they could be used in a doctor’s office – or, potentially, even at home."

David March | EurekAlert!
Further information:
http://www.uphs.upenn.edu/news

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

For a chimpanzee, one good turn deserves another

27.06.2017 | Life Sciences

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>