Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electronic nose device proves effective for diagnosing pneumonia and sinusitis

29.04.2004


Penn researchers show effectiveness of device in analyzing gases exhaled from the nose to determine presence of common bacterial infections



Researchers at the University of Pennsylvania School of Medicine have recently completed three studies – the most comprehensive and largest to date – that demonstrate the effectiveness of an electronic nose device for diagnosing common respiratory infections, specifically pneumonia and sinusitis. Doctors hope that the device – called the Cyranose 320, or e-nose – will provide a faster, more cost-effective and easier-to-use method for accurately diagnosing pneumonia and, as a result, help reduce over-prescription of antibiotics. Their initial findings will be presented at the combined annual meetings of otorhinolaryngology (ear, nose and throat) experts – the Triologic Society and the American Broncho-Esophagological Association – on April 30th, 2004, in Phoenix, Arizona.
"Pneumonia is a serious bacterial infection that can cause serious injury or even death; indeed, it remains a leading cause of death in intensive care units (ICUs)," said lead author of the first study, C. William Hanson III, MD, Professor of Anesthesia and board-certified expert in critical care medicine. "Treating this illness is complicated because there are many kinds of pneumonia, and it can be commonly misdiagnosed in the ICU and confused with other diseases which cannot be treated using antibiotics. This is a leading cause of the overuse – through over-prescription – of antibiotics for false cases of pneumonia."

The first two studies looked at pneumonia cases among patients who are on ventilators in the surgical intensive care unit (SICU). Here, diagnosis is made difficult by the patients’ limited ability to move, and they are vulnerable to infections from other compounding injuries. In the first study, researchers found that the e-nose effectively diagnosed 92 percent of pneumonia cases among 25 patients, as confirmed by computed tomography (CT) scans of the lungs. It successfully distinguished 13 positive cases from 12 other patients who did not have pneumonia. Similarly, in the second study, researchers found the e-nose effective in providing accurate diagnoses of pneumonia in 31 of 44 SICU patients (70 percent).



One quarter of ventilated SICU patients develop pneumonia – a serious complication that can threaten the patient’s life, requires immediate treatment with antibiotics, and also increases their hospital stay three-fold, with average additional hospital costs of $11,000 per patient.

The third study looked at sinusitis, the most common diagnosis from respiratory complaints by patients in outpatient clinics. The e-nose was effective at diagnosing 82 percent of sinusitis cases among 22 patients, one half infected and the other half not so.

All bacteria, as living organisms, produce unique arrays or mixtures of exhaled gases. The e-nose works by comparing "smellprints" from a patient’s breath sample to standardized, or known, readings stored on a computer chip. These "smellprints" are created from both electro-chemical and mathematical analysis of exhaled gases contained in a breath sample. Upon analysis, identifiable patterns emerge, and a patient’s "smellprint" can tell a physician whether or not bacteria are present and, if so, what kind. This can aid not just in the accuracy of diagnosis, but can also help physicians select the most effective antibiotic for treatment.

"The results confirm that exhaled breath can be analyzed for pneumonia and sinusitis using a commercially available e-nose device," said lead investigator for the sinusitis study and co-investigator for the pneumonia studies, Erica Thaler, MD, an Associate Professor of Otorhinolaryngology: Head and Neck Surgery at Penn. "There is the potential with this device to radically change and improve the way we diagnose and treat both conditions – for which there is no gold-standard test. And, given that we can apply this sensory analysis to the detection of pneumonia and sinusitis, then, hopefully, it can be applied to common bacterial infections of the upper respiratory tract."

The e-nose is also being studied for its possible use in diagnosing many other illnesses, including: lung cancer, kidney disease and cirrhosis of the liver, otitis media (middle ear infections) in children, or even detection of chemicals and biological agents. Manufactured by Smiths Detection of Pasadena, CA, the machines cost approximately $8,000 USD, and still require approval from the federal Food and Drug Administration before they can be widely used. Breath samples are taken with a hand-held sensor – about the size of child’s video game player – connected to a standard oxygen mask with cup, as the patient breathes normally. Readings are displayed by connecting the device to a laptop computer.

"Flexibility and ease-of-use are the greatest advantages of the e-nose," said lead researcher Neil Hockstein, MD, a clinical instructor and Penn otorhinolaryngologist. "They are miniaturized devices, provide quick results, are relatively inexpensive, non-invasive, safe for patients and they could be used in a doctor’s office – or, potentially, even at home."

David March | EurekAlert!
Further information:
http://www.uphs.upenn.edu/news

More articles from Health and Medicine:

nachricht Research offers clues for improved influenza vaccine design
09.04.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Injecting gene cocktail into mouse pancreas leads to humanlike tumors
06.04.2018 | University of Texas Health Science Center at San Antonio

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>