Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electronic nose device proves effective for diagnosing pneumonia and sinusitis

29.04.2004


Penn researchers show effectiveness of device in analyzing gases exhaled from the nose to determine presence of common bacterial infections



Researchers at the University of Pennsylvania School of Medicine have recently completed three studies – the most comprehensive and largest to date – that demonstrate the effectiveness of an electronic nose device for diagnosing common respiratory infections, specifically pneumonia and sinusitis. Doctors hope that the device – called the Cyranose 320, or e-nose – will provide a faster, more cost-effective and easier-to-use method for accurately diagnosing pneumonia and, as a result, help reduce over-prescription of antibiotics. Their initial findings will be presented at the combined annual meetings of otorhinolaryngology (ear, nose and throat) experts – the Triologic Society and the American Broncho-Esophagological Association – on April 30th, 2004, in Phoenix, Arizona.
"Pneumonia is a serious bacterial infection that can cause serious injury or even death; indeed, it remains a leading cause of death in intensive care units (ICUs)," said lead author of the first study, C. William Hanson III, MD, Professor of Anesthesia and board-certified expert in critical care medicine. "Treating this illness is complicated because there are many kinds of pneumonia, and it can be commonly misdiagnosed in the ICU and confused with other diseases which cannot be treated using antibiotics. This is a leading cause of the overuse – through over-prescription – of antibiotics for false cases of pneumonia."

The first two studies looked at pneumonia cases among patients who are on ventilators in the surgical intensive care unit (SICU). Here, diagnosis is made difficult by the patients’ limited ability to move, and they are vulnerable to infections from other compounding injuries. In the first study, researchers found that the e-nose effectively diagnosed 92 percent of pneumonia cases among 25 patients, as confirmed by computed tomography (CT) scans of the lungs. It successfully distinguished 13 positive cases from 12 other patients who did not have pneumonia. Similarly, in the second study, researchers found the e-nose effective in providing accurate diagnoses of pneumonia in 31 of 44 SICU patients (70 percent).



One quarter of ventilated SICU patients develop pneumonia – a serious complication that can threaten the patient’s life, requires immediate treatment with antibiotics, and also increases their hospital stay three-fold, with average additional hospital costs of $11,000 per patient.

The third study looked at sinusitis, the most common diagnosis from respiratory complaints by patients in outpatient clinics. The e-nose was effective at diagnosing 82 percent of sinusitis cases among 22 patients, one half infected and the other half not so.

All bacteria, as living organisms, produce unique arrays or mixtures of exhaled gases. The e-nose works by comparing "smellprints" from a patient’s breath sample to standardized, or known, readings stored on a computer chip. These "smellprints" are created from both electro-chemical and mathematical analysis of exhaled gases contained in a breath sample. Upon analysis, identifiable patterns emerge, and a patient’s "smellprint" can tell a physician whether or not bacteria are present and, if so, what kind. This can aid not just in the accuracy of diagnosis, but can also help physicians select the most effective antibiotic for treatment.

"The results confirm that exhaled breath can be analyzed for pneumonia and sinusitis using a commercially available e-nose device," said lead investigator for the sinusitis study and co-investigator for the pneumonia studies, Erica Thaler, MD, an Associate Professor of Otorhinolaryngology: Head and Neck Surgery at Penn. "There is the potential with this device to radically change and improve the way we diagnose and treat both conditions – for which there is no gold-standard test. And, given that we can apply this sensory analysis to the detection of pneumonia and sinusitis, then, hopefully, it can be applied to common bacterial infections of the upper respiratory tract."

The e-nose is also being studied for its possible use in diagnosing many other illnesses, including: lung cancer, kidney disease and cirrhosis of the liver, otitis media (middle ear infections) in children, or even detection of chemicals and biological agents. Manufactured by Smiths Detection of Pasadena, CA, the machines cost approximately $8,000 USD, and still require approval from the federal Food and Drug Administration before they can be widely used. Breath samples are taken with a hand-held sensor – about the size of child’s video game player – connected to a standard oxygen mask with cup, as the patient breathes normally. Readings are displayed by connecting the device to a laptop computer.

"Flexibility and ease-of-use are the greatest advantages of the e-nose," said lead researcher Neil Hockstein, MD, a clinical instructor and Penn otorhinolaryngologist. "They are miniaturized devices, provide quick results, are relatively inexpensive, non-invasive, safe for patients and they could be used in a doctor’s office – or, potentially, even at home."

David March | EurekAlert!
Further information:
http://www.uphs.upenn.edu/news

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>