Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sodium channel gene mutation identified in case of familial epilepsy

28.04.2004


Researchers at Emory University have identified a specific mutation in a sodium channel gene (SCN1A) that is associated with epilepsy syndrome in a family. The findings were presented at the American Academy of Neurology in San Francisco on Tuesday, April 27th . The finding adds to a growing body of information about links between genetic mutations and epilepsy; more than two dozen genes implicated in the disease have been discovered to date, according to the Epilepsy Foundation.



"The premise of this study was to enroll families with neurological diseases in which the genetic cause is unknown," says Salina Waddy, MD, associate and post-doctoral fellow in the Department of Neurology, Emory University School of Medicine. "Identifying this novel mutation in a sodium channel gene (SCN1A) on Chromosome 2, which is associated with epilepsy will, in the end, help us learn how to better treat patients and their families who have a type of familial epilepsy called generalized epilepsy with febrile seizures plus (GEFS+)."

Six Caucasian family members who all had GEFS+ were enrolled in the Emory study. GEFS+ is described as a condition where unusual bursts of energy discharge across the entire brain simultaneously, resulting in a seizure that is sometimes associated with high fevers. In most people who have febrile seizures, the seizures go away before the age of 6. In these patients, their febrile seizures occasionally persist beyond age 6, hence the "plus" in the GEFS+ name.


A physical exam, MRI and EEG analyses (electroencephalogram or brain electrical activity recording) were performed on the family member who attends the Emory Epilepsy Clinic in order to confirm the diagnosis. Other family members were interviewed by telephone and medical histories were documented and corroborated by other family members. Once completed, blood samples were taken and DNA was isolated. The researchers then screened the genes in which other GEFS+ mutations have been previously identified and discovered the mutation known as R859C.

"The whole genetic basis of epilepsy is exploding," says Sandra Helmers, MD, associate professor of neurology, Emory University School of Medicine. "The genes for this one particular form of inherited epilepsy (GEFS+) were initially described in the late 90s. This new finding allows us to think about epilepsy in a different light and realize that some epilepsies do run in families. This finding will also allow us to look at better diagnoses, treatments and better genetic counseling for this population."

The study was funded by grants from the Citizens United for Research in Epilepsy (CURE) and the March of Dimes and is a collaboration between members of Emory’s Departments of Neurology and Human Genetics.

"Collaborations such as these are the key to translational research, which will benefit patient care in the long term," says Andrew Escayg, PhD, assistant professor of human genetics in the Emory University School of Medicine. "Multidisciplinary research is becoming more and more important when studying complex neurological disorders, such as epilepsy."

The team of researchers is also trying to identify novel or new genes in other neurological disorders, such as neuromuscular diseases, ataxia, sleep disorders and dystonia.

"By identifying genes and mutations in these specific neurological disorders, we should be able to give more precise care to our patients, as well as give them better answers about their disorders," says Dr. Waddy. "And, with our recent finding in this form of familial epilepsy, I think we are on the right track."

The GEFS+ mutation presentation will be highlighted in two other scientific sessions during the American Academy of Neurology Conference.


Media Contact: Janet Christenbury, 404-727-8599, jmchris@emory.edu.

Janet Christenbury | EurekAlert!
Further information:
http://www.emory.edu/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>