Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sodium channel gene mutation identified in case of familial epilepsy

28.04.2004


Researchers at Emory University have identified a specific mutation in a sodium channel gene (SCN1A) that is associated with epilepsy syndrome in a family. The findings were presented at the American Academy of Neurology in San Francisco on Tuesday, April 27th . The finding adds to a growing body of information about links between genetic mutations and epilepsy; more than two dozen genes implicated in the disease have been discovered to date, according to the Epilepsy Foundation.



"The premise of this study was to enroll families with neurological diseases in which the genetic cause is unknown," says Salina Waddy, MD, associate and post-doctoral fellow in the Department of Neurology, Emory University School of Medicine. "Identifying this novel mutation in a sodium channel gene (SCN1A) on Chromosome 2, which is associated with epilepsy will, in the end, help us learn how to better treat patients and their families who have a type of familial epilepsy called generalized epilepsy with febrile seizures plus (GEFS+)."

Six Caucasian family members who all had GEFS+ were enrolled in the Emory study. GEFS+ is described as a condition where unusual bursts of energy discharge across the entire brain simultaneously, resulting in a seizure that is sometimes associated with high fevers. In most people who have febrile seizures, the seizures go away before the age of 6. In these patients, their febrile seizures occasionally persist beyond age 6, hence the "plus" in the GEFS+ name.


A physical exam, MRI and EEG analyses (electroencephalogram or brain electrical activity recording) were performed on the family member who attends the Emory Epilepsy Clinic in order to confirm the diagnosis. Other family members were interviewed by telephone and medical histories were documented and corroborated by other family members. Once completed, blood samples were taken and DNA was isolated. The researchers then screened the genes in which other GEFS+ mutations have been previously identified and discovered the mutation known as R859C.

"The whole genetic basis of epilepsy is exploding," says Sandra Helmers, MD, associate professor of neurology, Emory University School of Medicine. "The genes for this one particular form of inherited epilepsy (GEFS+) were initially described in the late 90s. This new finding allows us to think about epilepsy in a different light and realize that some epilepsies do run in families. This finding will also allow us to look at better diagnoses, treatments and better genetic counseling for this population."

The study was funded by grants from the Citizens United for Research in Epilepsy (CURE) and the March of Dimes and is a collaboration between members of Emory’s Departments of Neurology and Human Genetics.

"Collaborations such as these are the key to translational research, which will benefit patient care in the long term," says Andrew Escayg, PhD, assistant professor of human genetics in the Emory University School of Medicine. "Multidisciplinary research is becoming more and more important when studying complex neurological disorders, such as epilepsy."

The team of researchers is also trying to identify novel or new genes in other neurological disorders, such as neuromuscular diseases, ataxia, sleep disorders and dystonia.

"By identifying genes and mutations in these specific neurological disorders, we should be able to give more precise care to our patients, as well as give them better answers about their disorders," says Dr. Waddy. "And, with our recent finding in this form of familial epilepsy, I think we are on the right track."

The GEFS+ mutation presentation will be highlighted in two other scientific sessions during the American Academy of Neurology Conference.


Media Contact: Janet Christenbury, 404-727-8599, jmchris@emory.edu.

Janet Christenbury | EurekAlert!
Further information:
http://www.emory.edu/

More articles from Health and Medicine:

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>