Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Future blood tests may use tiny bar-codes to speed disease diagnosis

28.04.2004


Analyzing a blood sample for the presence of disease markers, either in a doctor’s office or on the battlefield, could soon become as quick and easy as scanning the bar-code of a grocery item. Using nanotechnology, researchers at Northwestern University have developed a way to label tiny disease markers in blood with unique DNA tags, which they call bio-bar-codes. The tags can then be scanned by an instrument to identify diseases ranging from cancer to Alzheimer’s, or identify exposure to bioterror agents such as anthrax and smallpox, they say.



Details about the analytical test, which appears promising in experimental studies, are scheduled to appear in the May 19 print issue of the Journal of the American Chemical Society, a peer-reviewed publication of the American Chemical Society, the world’s largest scientific society. The study was published online today (April 27) on the journal’s Web site.

"This test has the potential to completely revolutionize medical diagnostics," says Chad A. Mirkin, Ph.D., head of the study and director of Northwestern’s Institute for Nanotechnology, located in Evanston, Ill. He says that the test will bring efficient, high-tech DNA diagnostics to unprecedented settings, including the battlefield and Third World villages, as well as hospitals and the home.


The test is easier, faster, more accurate and less expensive than polymerase chain reaction (PCR), which is currently used to detect and quantify DNA samples, he says. The new test, called bio-bar-code amplification (BCA), could be ready for marketing in as little as one year, Mirkin says.

Unlike conventional tests that require one or more vials of blood, the new test allows a single drop of blood to paint a patient’s comprehensive disease profile in about the same amount of time it takes for a routine doctor’s visit.

The test is based on a set of chemical probes that are used to tag disease markers. If one is trying to detect exposure to anthrax, for instance, a set of probes is prepared that represents a unique molecular tag for anthrax-related DNA. One probe includes a magnetic nanoparticle containing a single DNA strand that matches the target (anthrax) DNA. The other probe consists of a gold nanoparticle attached to a DNA strand that also matches the target (anthrax) DNA. The gold nanoparticle is also attached to hundreds of DNA bar-code sequences that are unique identification tags for the anthrax target DNA. If anthrax is present in the blood, its DNA marker is then sandwiched between the two probes, separated magnetically, scanned and identified.

So far, the test has proven accurate in detecting anthrax lethal factor — a marker for anthrax exposure. It has also been used to detect prostate specific antigen — a marker for prostate cancer — at low levels. One could conceivably develop a bar-code for every disease-related protein or DNA sequence, according to Mirkin.

Current scanners that can read the bar-codes are bulky, stationary instruments, but a handheld prototype is in development. If all goes well in future studies, bar-code scanning of blood could be developed for home use, allowing consumers to make their own initial medical diagnoses quickly and easily, says Mirkin.

Nanosphere, a company that develops nanoparticle-based biodetection technology for medical diagnostics, was started four years ago by Mirkin.


Funding for this research was provided by the Air force Office of Scientific Research, the Defense Advanced Research Projects Agency, the National Science Foundation and the National Institutes of Health.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org/

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>