Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Future blood tests may use tiny bar-codes to speed disease diagnosis

28.04.2004


Analyzing a blood sample for the presence of disease markers, either in a doctor’s office or on the battlefield, could soon become as quick and easy as scanning the bar-code of a grocery item. Using nanotechnology, researchers at Northwestern University have developed a way to label tiny disease markers in blood with unique DNA tags, which they call bio-bar-codes. The tags can then be scanned by an instrument to identify diseases ranging from cancer to Alzheimer’s, or identify exposure to bioterror agents such as anthrax and smallpox, they say.



Details about the analytical test, which appears promising in experimental studies, are scheduled to appear in the May 19 print issue of the Journal of the American Chemical Society, a peer-reviewed publication of the American Chemical Society, the world’s largest scientific society. The study was published online today (April 27) on the journal’s Web site.

"This test has the potential to completely revolutionize medical diagnostics," says Chad A. Mirkin, Ph.D., head of the study and director of Northwestern’s Institute for Nanotechnology, located in Evanston, Ill. He says that the test will bring efficient, high-tech DNA diagnostics to unprecedented settings, including the battlefield and Third World villages, as well as hospitals and the home.


The test is easier, faster, more accurate and less expensive than polymerase chain reaction (PCR), which is currently used to detect and quantify DNA samples, he says. The new test, called bio-bar-code amplification (BCA), could be ready for marketing in as little as one year, Mirkin says.

Unlike conventional tests that require one or more vials of blood, the new test allows a single drop of blood to paint a patient’s comprehensive disease profile in about the same amount of time it takes for a routine doctor’s visit.

The test is based on a set of chemical probes that are used to tag disease markers. If one is trying to detect exposure to anthrax, for instance, a set of probes is prepared that represents a unique molecular tag for anthrax-related DNA. One probe includes a magnetic nanoparticle containing a single DNA strand that matches the target (anthrax) DNA. The other probe consists of a gold nanoparticle attached to a DNA strand that also matches the target (anthrax) DNA. The gold nanoparticle is also attached to hundreds of DNA bar-code sequences that are unique identification tags for the anthrax target DNA. If anthrax is present in the blood, its DNA marker is then sandwiched between the two probes, separated magnetically, scanned and identified.

So far, the test has proven accurate in detecting anthrax lethal factor — a marker for anthrax exposure. It has also been used to detect prostate specific antigen — a marker for prostate cancer — at low levels. One could conceivably develop a bar-code for every disease-related protein or DNA sequence, according to Mirkin.

Current scanners that can read the bar-codes are bulky, stationary instruments, but a handheld prototype is in development. If all goes well in future studies, bar-code scanning of blood could be developed for home use, allowing consumers to make their own initial medical diagnoses quickly and easily, says Mirkin.

Nanosphere, a company that develops nanoparticle-based biodetection technology for medical diagnostics, was started four years ago by Mirkin.


Funding for this research was provided by the Air force Office of Scientific Research, the Defense Advanced Research Projects Agency, the National Science Foundation and the National Institutes of Health.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org/

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>