Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New more rapid methods for the detection of salmonella


The food and drink we consume have to pass strict quality control tests. Nevertheless, these precautions are not always sufficient, given that some foodstuffs still give rise to illness. In most cases, food poisoning is caused by micro-organisms. The salmonella bacteria is, without doubt, one of the better known ones. The University of the Basque Country (EHU) is developing a new system to detect salmonella with greater rapidity - within 24 hours.

Salmonella is quite a ubiquitous bacteria, found in foodstuffs of animal origin and in contaminated water. It is a resistant micro-organism which adapts easily to extreme environmental conditions. Salmonella actively grows under a wide range of temperatures: less than or equal to 54 degrees Celsius. The consequences are well known to all: enterocolitis, systemic infections, gastro-enteritis and typhoid fever.

Nowadays, detecting salmonella in food is a simple process. An analysis is carried out in the laboratory, by means of conventional microbiological culture growth techniques and the results are obtained within 7 days.

Nevertheless, this gives rise to problems for doctors or for the food industry, not being able to afford this time period and so often finding that they have to make decisions without waiting for or depending on the analysis results. At the Department of Immunology, Microbiology and Parasitology of the EHU, it was realised that there was a need to develop more rapid detection systems and, thus, research in the field of genetic techniques was instigated. To this end, contact was made with the company in Alava (in the Basque Country), Laboratorios Bromatológicos Araba.

Three bodies are working jointly on this project: the EHU, responsible for the development of a detection system for viable bacteria; Laboratorios Bromatológicos Araba, which applies the university research results to real samples and, finally, the LEIA Technological Centre, charged with developing pre-treatment systems for the samples. The aim of the project is to manage to detect salmonella infection within 24 hours.

Moreover, the fact that the complete genome for salmonella – some 4,500,000 pairs of bases - became known only a few years ago, has provided a great advance for researchers. Although it is too early to talk of results, it has been demonstrated that just a DNA extraction is not sufficient in order to detect salmonella, given that it does not indicate whether or not the bacteria is alive or dead. So, with new genetic techniques, other, more specific markers for the viability of the bacteria are being sought. One of these could be RNA.

It is the specific genes just of the salmonella that is the target of this research – some 100 or 200 genes. To this end, a new device that functions much more rapidly has been acquired a PCR which works in real time. This device, moreover, enables the quantifying of the reaction, i.e. it tells us the number of species of salmonella there is. The PCR results are analysed through various graphical representations and then interpreted. The green line indicates the presence of salmonella.

Nerea Pikabea | Basque research
Further information:

More articles from Health and Medicine:

nachricht Scientists develop tiny tooth-mounted sensors that can track what you eat
22.03.2018 | Tufts University

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>