Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New more rapid methods for the detection of salmonella

22.04.2004


The food and drink we consume have to pass strict quality control tests. Nevertheless, these precautions are not always sufficient, given that some foodstuffs still give rise to illness. In most cases, food poisoning is caused by micro-organisms. The salmonella bacteria is, without doubt, one of the better known ones. The University of the Basque Country (EHU) is developing a new system to detect salmonella with greater rapidity - within 24 hours.



Salmonella is quite a ubiquitous bacteria, found in foodstuffs of animal origin and in contaminated water. It is a resistant micro-organism which adapts easily to extreme environmental conditions. Salmonella actively grows under a wide range of temperatures: less than or equal to 54 degrees Celsius. The consequences are well known to all: enterocolitis, systemic infections, gastro-enteritis and typhoid fever.

Nowadays, detecting salmonella in food is a simple process. An analysis is carried out in the laboratory, by means of conventional microbiological culture growth techniques and the results are obtained within 7 days.


Nevertheless, this gives rise to problems for doctors or for the food industry, not being able to afford this time period and so often finding that they have to make decisions without waiting for or depending on the analysis results. At the Department of Immunology, Microbiology and Parasitology of the EHU, it was realised that there was a need to develop more rapid detection systems and, thus, research in the field of genetic techniques was instigated. To this end, contact was made with the company in Alava (in the Basque Country), Laboratorios Bromatológicos Araba.

Three bodies are working jointly on this project: the EHU, responsible for the development of a detection system for viable bacteria; Laboratorios Bromatológicos Araba, which applies the university research results to real samples and, finally, the LEIA Technological Centre, charged with developing pre-treatment systems for the samples. The aim of the project is to manage to detect salmonella infection within 24 hours.

Moreover, the fact that the complete genome for salmonella – some 4,500,000 pairs of bases - became known only a few years ago, has provided a great advance for researchers. Although it is too early to talk of results, it has been demonstrated that just a DNA extraction is not sufficient in order to detect salmonella, given that it does not indicate whether or not the bacteria is alive or dead. So, with new genetic techniques, other, more specific markers for the viability of the bacteria are being sought. One of these could be RNA.

It is the specific genes just of the salmonella that is the target of this research – some 100 or 200 genes. To this end, a new device that functions much more rapidly has been acquired a PCR which works in real time. This device, moreover, enables the quantifying of the reaction, i.e. it tells us the number of species of salmonella there is. The PCR results are analysed through various graphical representations and then interpreted. The green line indicates the presence of salmonella.

Nerea Pikabea | Basque research
Further information:
http://www.ehu.es
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=450&hizk=I

More articles from Health and Medicine:

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>