Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malignant breast cancer cells to revert to normal with manipulation

19.04.2004


Speaking at Experimental Biology 2004, Dr. Mina Bissell describes research showing how manipulation of the extracellular matrix (a network of fibrous and globular proteins that surrounds breast cells) of non-malignant breast cells can lead to genomic instability via oxidative damage. She describes how manipulation of the microenvironment can allow malignant breast cancer cells to revert to normal cells again. She also describes how the tissue culture of the extracellular matrix affects the cancerous cells’ resistance to chemotherapy, independently of the characteristics of the malignancy itself.



Her presentation is part of the scientific program of the American Association of Anatomists, one of the six sponsoring societies of this year’s Experimental Biology meeting.

Dr. Bissell, a Distinguished Scientist at the Lawrence Berkeley Laboratory, is best known as the researcher who uncovered the critical role of extracellular matrix (ECM) in normal breast function and how its aberration may contribute to breast cancer development. While the role of ECM during embryonic development had been recognized for decades, its important role in tissue-specific function was not appreciated before the work in a handful of laboratories including Dr. Bissell’s laboratory. In fact, ECM was regarded as scaffolding for tissues and not much more.


Dr. Bissell postulated in 1981, and later showed experimentally, that the ECM was part of a "dynamic reciprocity" in the social interaction between cells and the nucleus much like hormones and growth factors, with the ECM at times telling the nucleus of the cells what to do and thus directing gene expression in conjunction with these other factors. She had chosen the breast to study the critical role of the ECM in normal breast tissue, a model she had selected because it continues to change throughout life of women in puberty, pregnancy, lactation, and once breast feeding is done (involution). In some of their earliest work, Dr. Bissell and her collaborators reported when breasts cells were placed on Petri dish tissue culture (2-D environment), even with all the right hormones and nutrients, they grew but did not differentiate and behave as breast cells do in the body. But when they were embedded in a 3-D extracellular matrix that mimicked real, living tissues, then the cells came together and organized as they would in the body, making tissue-like structures.

Studying how cancers develop and spread was a natural next step. One of the 3-D cell pioneers, Dr. Bissell believes science has concentrated too much on the cancer cell itself, when at times it’s what is outside those cells that lead to the affected cell’s genomic instability and mutation. Otherwise, she asks, why does everyone who has a BRCA 1 or 2 mutations not get breast cancer in every cell of the breast or ovary or indeed get it at all? Or perhaps more interestingly, since women who do have the mutation have it in every cell of their body, why does it only cause breast cancer and/or ovarian cancer? Why not also cancer of the skin or gut?

The 20th century will be remembered for the discovery of how genetic defects contribute to cancer. But in the 21st century, increasing evidence is being placed on the cellular microenvironment that makes up the context of cancer, both in ontogenesis, signaling the cell to permit expression of a cancer-causing gene, and in metastasis, when the nature of the ECM and its degrading enzymes may help allow cells to exist in microenvironments that differ from those in which they originated. Dr. Bissell’s research into the sophisticated manner in which the cellular environment affects gene expression within breast cells supports her belief that both normal and malignant cells are plastic and malleable, that normal cells can become malignant if the microenvironment is adversely affected, and that cancer cells even with many mutations can still become reverted to a normal phenotype. She also believes that the architecture of the tissue is important in how a tissue behaves and how it responds to chemotherapeutic agents.

Sarah Goodwin | EurekAlert!
Further information:
http://www.faseb.org/

More articles from Health and Medicine:

nachricht A 'half-hearted' solution to one-sided heart failure
24.11.2017 | Boston Children's Hospital

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>