Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Biosensor-regulated gene therapy reduces heart attack damage in mice


A novel gene therapy that responds specifically to oxygen-starved heart muscle may protect against further injury following a heart attack, a study by University of South Florida cardiovascular researchers found.

Their findings are reported in the April 2004 issue of the journal Hypertension.

M. Ian Phillips, PhD, DSc, and his team at the USF College of Medicine and All Children’s Hospital Research Institute designed a kind of oxygen-sensitive biosensor that turns on protective genes when signs of oxygen deprivation indicate a heart attack and turns the genes off once blood flow restores adequate oxygen levels to the heart. Dr. Phillips, principal investigator; Yao Liang Tang, MD, lead author; and colleagues showed that this biosensor-regulated gene therapy protected heart muscle cells in mice with heart attacks from further injury.

Dr. Phillips and Dr. Tang envision administering such a therapy after a first heart attack to limit initial damage and prevent future attacks. While much work remains to test and refine such a therapy, Dr. Phillips said, this new concept might eventually be an alternative to stents and bypass surgery.

People who suffer one heart attack are at higher risk for subsequent attacks. Often lack of blood flow to the heart muscle, known as cardiac ischemia, does not cause pain or other symptoms. This asymptomatic or "silent" ischemia can lead to a second or third heart attack without prior warning.

"Repeated bouts of myocardial ischemia cause cumulative tissue damage in the heart vessels that can lead to a fatal heart attack," said Dr. Phillips, USF vice president for research and professor of physiology and biophysics. "Therefore, what patients need is a gene therapy strategy that acts in the heart and switches on or off, so that the therapeutic protein is produced only where and when it is needed."

"One of the exciting aspects of the approach, described by Tang et al, is the ability to directly link expression of potentially therapeutic genes to a pathological stimulus associated with myocardial infarction, ischemia," states an editorial in Hypertension highlighting the USF research. "Ultimately, this area of research will pave the way for development of ’smart’ therapies for the heart that allow for early and rapid treatment of a wide variety of cardiac ailments."

The USF researchers designed a molecule -- which they call a "vigilant vector" -- containing both a means to increase the expression of protective heme oxygenase-1(HO-1) genes and the oxygen-sensitive switch that turns these genes on and off. They injected this molecule directly into the hearts of mice one hour after the mice had heart attacks.

Ten days following their heart attacks, the mice that received the biosensor-regulated gene therapy showed less heart tissue scarring and better recovery of heart pumping function than the untreated mice injected with saline only. The researchers demonstrated that turning on the protective HO-1 genes stopped the heart muscle cells from dying and limited the area of damage.

Anne DeLotto Baier | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>