Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biosensor-regulated gene therapy reduces heart attack damage in mice

07.04.2004


A novel gene therapy that responds specifically to oxygen-starved heart muscle may protect against further injury following a heart attack, a study by University of South Florida cardiovascular researchers found.



Their findings are reported in the April 2004 issue of the journal Hypertension.

M. Ian Phillips, PhD, DSc, and his team at the USF College of Medicine and All Children’s Hospital Research Institute designed a kind of oxygen-sensitive biosensor that turns on protective genes when signs of oxygen deprivation indicate a heart attack and turns the genes off once blood flow restores adequate oxygen levels to the heart. Dr. Phillips, principal investigator; Yao Liang Tang, MD, lead author; and colleagues showed that this biosensor-regulated gene therapy protected heart muscle cells in mice with heart attacks from further injury.


Dr. Phillips and Dr. Tang envision administering such a therapy after a first heart attack to limit initial damage and prevent future attacks. While much work remains to test and refine such a therapy, Dr. Phillips said, this new concept might eventually be an alternative to stents and bypass surgery.

People who suffer one heart attack are at higher risk for subsequent attacks. Often lack of blood flow to the heart muscle, known as cardiac ischemia, does not cause pain or other symptoms. This asymptomatic or "silent" ischemia can lead to a second or third heart attack without prior warning.

"Repeated bouts of myocardial ischemia cause cumulative tissue damage in the heart vessels that can lead to a fatal heart attack," said Dr. Phillips, USF vice president for research and professor of physiology and biophysics. "Therefore, what patients need is a gene therapy strategy that acts in the heart and switches on or off, so that the therapeutic protein is produced only where and when it is needed."

"One of the exciting aspects of the approach, described by Tang et al, is the ability to directly link expression of potentially therapeutic genes to a pathological stimulus associated with myocardial infarction, ischemia," states an editorial in Hypertension highlighting the USF research. "Ultimately, this area of research will pave the way for development of ’smart’ therapies for the heart that allow for early and rapid treatment of a wide variety of cardiac ailments."

The USF researchers designed a molecule -- which they call a "vigilant vector" -- containing both a means to increase the expression of protective heme oxygenase-1(HO-1) genes and the oxygen-sensitive switch that turns these genes on and off. They injected this molecule directly into the hearts of mice one hour after the mice had heart attacks.

Ten days following their heart attacks, the mice that received the biosensor-regulated gene therapy showed less heart tissue scarring and better recovery of heart pumping function than the untreated mice injected with saline only. The researchers demonstrated that turning on the protective HO-1 genes stopped the heart muscle cells from dying and limited the area of damage.

Anne DeLotto Baier | EurekAlert!
Further information:
http://hsc.usf.edu/

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>