Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NMR Microscope Allows Doctors to Focus on Diseased Soft Tissue

07.04.2004


Imagine what it was like to take a photograph of an object such as a tree, before the wide availablilty of zoom lenses. You would be able to make out the shape and the branches from a distance but you wouldn’t be able to see the smaller branches or leaves. Until recently, Doctors have been in a similar situation regarding NMR (nuclear magnetic resonance) imaging of organs and other features deep within the body. Thanks to a new NMR microscope developed by Oxford Researchers, Doctors will in future be able to focus in with a magnification factor of around x100 on ’hot spots’ or areas identified as a potentially life threatening soft tissue disease such as cancer or an aneurysm in order to make a more reliable diagnosis in a more comfortable way for the patient.



The imaging of very small features within the human body using NMR has long been a desirable objective, not only because the images provided using current methods of PET (Positron Emission Tomography) scanning are not detailed enough i.e. they do not allow images of organs or other features deep within the body to be created in enough detail, but also because they involve the use of unpleasant processes such as injecting opaque dyes and time restricted large dose levels of X-rays.

Researchers at Oxford University have developed a waveguide technology which permits the detailed examination of features located at its tip. The tapered pickup allows the collection of very localised signals whilst isolating them from surrounding objects resulting in the possibility of collecting very high resolution MRI data.


The simple, narrow, tapered pickup device basically works as a funnel for the electromagnetic fields used in NMR imaging, constricting and concentrating them down its bore such that the field strength at the tip of the device is significantly concentrated. In its simplest embodiments the concentration ratio determines the degree of field expansion produced. Waveguides with tips as narrow as 10 microns have been proposed, which would potentially magnify the field distribution presented at the tip by several hundred times.

"It is envisaged that this new technology is as significant to NMR imaging today as zoom lenses were to photography in the past. It will also help to make the process a much less daunting experience for the patient" stated Dr Robert Adams, a project manager for Isis Innovation Ltd the technology transfer company of Oxford University.

Kim Bruty | alfa

More articles from Health and Medicine:

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>