Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Received Truth Turned On End In Cancer Research

06.04.2004


It has long been the accepted view of cancer researchers that there is a difference between the mechanism behind the development of leukemias, on the one hand, and solid tumors like breast cancer, prostate cancer, gastrointestinal cancer, etc, on the other. A research team at the Section for Clinical Genetics at Lund University in Sweden is now claiming just the opposite: the same mechanism gives rise to all non-hereditary forms of cancer. These findings are being published in Nature Genetics.



A well-known mechanism for the development of cancer is that the chromosomes in a cell break apart and then recombine in an incorrect way. At the points of fissure, gene fragments are exposed that can recombine with so-called fusion genes, yielding fusion proteins. Leukemias--blood cancer--normally develop from cells that contain such fusion proteins. It is not known how this occurs in detail, but in some way the fusion proteins prompt formerly normal cells to transform into cancer cells. On the other hand, solid tumors, which make up the majority of all cancer cases, have been seen as developing as a result of certain cells losing the inhibiting mechanism in the form of so-called tumor suppressor genes that keep tumors from arising.

“This is no doubt correct in regard to hereditary cancer. But hereditary cancer accounts for only 5-10 percent of all cancer cases. We now maintain that all of the others have the same developmental mechanisms. In non-hereditary cancer forms it is the occurrence of fusion genes and not the lack of tumor suppressor genes that is essential,” says Professor Felix Mitelman.


Mitelman and his associates Bertil Johansson and Fredrik Mertens have gathered information about aberrant chromosomes in cancer for years. In 1997 Nature Genetics devoted an entire issue to the large material the Lund team had compiled, something that has only happened on one other occasion (when the human genome was presented). This material is now available as a large and constantly growing database in the so-called Cancer Genome Anatomy Project at the US National Cancer Institute, called the Mitelman Database of Chromosome Aberrations in Cancer.

In leukemia cells it is rather easy to find fusion genes and fusion proteins. For technical reasons, this is much more difficult in solid tumors.

“And if you haven’t seen them, you assume that they’re not there. But what has been lacking is appropriate methods of examination,” claims Felix Mitelman.

The research team has found that the number of fusion genes in solid tumors stands in the same proportion to the number of patient cases examined with leukemias. This shows that the same mechanisms are involved: the chance of this match being coincidental is less than 0.0001.

The good thing about this discovery is that it should lead to more effective treatment of the major cancer forms. For one type of leukemia, at any rate, there is a medicine that specifically targets the active fusion protein, and it is both effective and mild.

The downside is that there are probably a very great number of different fusion genes behind the major forms of cancer. Each transformation of genes is found in just a few patients.

“Small groups of patients are not of interest to pharmaceutical companies. On the other hand, it may be that several fusion proteins have common traits that make it possible to use the same drug to combat them,” hopes Felix Mitelman.

The fact that his research team have now turned on end an established truth does not mean that other ongoing research on the significance of genetic factors in the emergence of cancer has also been overturned, he emphasizes. Much of this research is about the long road from the first cancer cell to a full-blown tumor, and in this process tumor suppressor genes are probably of great importance. What the Lund team has done is to provide a revolutionary new picture of how this very first cancer cell arises.

Ingela Björck | alfa
Further information:
http://www.lu.se/info/pm/698_pressm.html

More articles from Health and Medicine:

nachricht Scientists track ovarian cancers to site of origin: Fallopian tubes
23.10.2017 | Johns Hopkins Medicine

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Introduction of a novel system for in vitro analyses of zebrafish oligodendrocyte progenitor cells

23.10.2017 | Life Sciences

Did you know how many parts of your car require infrared heat?

23.10.2017 | Automotive Engineering

3rd Symposium on Driving Simulation

23.10.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>