Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel MRI Technique Provides Clear Images Of Blood Flow

05.04.2004


Duke University Medical Center researchers have created for the first time moving images of blood traveling through vessels, non-invasively and without the use of contrast agents or radiation. They used a novel application of magnetic resonance imaging (MRI) technology.


Robert Judd, Ph.D.
PHOTO CREDIT: Duke University Medical Center



Just as importantly, the researchers said, this technology can easily be applied to existing MRI machines, since the advances reported by the Duke team do not involve new hardware, but are rather the result of new conceptualization of the technology.

MRI uses harmless magnetic fields and radio-frequency signals to image tissues in the body. Basically, the magnetic fields cause hydrogen nuclei, or protons, that are part of water molecules in tissue to align. Pulses of radio frequency waves perturb this alignment, and the molecules give off telltale signals as they lose energy. The signature of such water molecules differs according to the tissue, providing the contrast that is a key to MRI’s ability to sensitively image tissues.


The new approach, called global coherent free precession (GCFP), allows researchers to selectively "tag" protons within the water of blood cells with radio frequency waves as they pass through the plane of the MRI scan. Since all other tissues surrounding the blood do not pass through the scanner’s plane, they are not tagged, leaving images solely of the blood as it moves downstream through the vessel.

The results of the Duke experiments, which will appear in the May issue of the journal Nature Medicine, were posted early on-line April 4, 2004.

Lead researcher Robert Judd, Ph.D., co-director of the Duke Cardiovascular Magnetic Resonance Center, recently received a grant from the National Institutes of Health to further study the MRI physics of the new phenomenon. Judd collaborated with Wolfgang Rehwald, Ph.D., a physicist with Siemens Medical Systems, manufacturer of the MRI equipment, as well as Duke researchers Raymond Kim, M.D. and Enn-Ling Chen, Ph.D.

"While further work is necessary to refine this new approach, GCFP already represents the only diagnostic technique capable of examining the functional effects of cardiovascular disease with real-time physician-scanner interaction, without an invasive procedure, without a contrast agent, and without radiation," Judd said.

The problems presented by contrast agents can be potentially significant, Judd explained, since these agents can cause kidney damage, and many patients with cardiovascular disease already have weakened kidneys due to their disease.

Currently, physicians wanting to see images or potentially blocked vessels typically use X-ray angiography. In this approach, a contrast agent is injected into the blood stream, and a series of X-rays are taken at the site of interest. These images are then assembled by a computer and the result is a short movie known as a cine (pronounced sin-ee).

"In our new approach, the act of MRI scanning itself excites protons in blood cells as they pass through the plane of the scan," Judd explained. "They are still excited as they flow downstream and the scanner can detect that signal. So the scanner is simultaneously tagging protons and collecting data."

During an MRI examination, a patient is guided through the cavity of a large doughnut-shaped magnet. The magnet causes hydrogen nuclei in cells to align, and when perturbed by radio waves, they give off characteristic signals, which create thousands of "cross-sectional "slices." These slices are then converted by computers into three-dimensional images.

While MRI technology itself is 20 years old, only in the past few years has technology improved to the point where accurate images of moving tissues can be taken. It was while studying these images of the heart and surrounding tissues that Judd continued to notice strange anomalies, or artifacts, appearing in the periphery of the scans. These artifacts often looked like pulsating spots of light.

"When we looked into it further, we found that these artifacts occurred in 5 to 10 percent of the scans," Judd explained. "After more research into the phenomenon, we decided to try to harness the effect rather than get rid of it."

As it turned out, the strange images appeared whenever a blood vessel ran perpendicular to the plane of the scan. So the researchers rotated the scanner, adjusted the radiofrequency of the scanner and developed a complex new way of capturing the images.

"As the blood cell flows through the plane, it is excited by the MRI," Judd explained. "While the next cell is also excited when it flows through, the first cell still gives off a radio-frequency signal that we can detect, on so on. We receive a continuous image of the blood flow."

The blood remains "excited" for about 13 centimeters from the point of excitation, Judd said.

For Judd, the new approach gives clear three-dimensional information on two important aspects of cardiovascular disease -- the actual anatomy of the vessel, as well as the speed and direction of blood flow.

"Information on flow is important because anatomy and function are not always related," he explained. "In one patient, a 70 percent blockage of an artery may hinder blood flow enough to cause cell death, while in the next patient, due to subtle differences in the three-dimensional shape and length of the blockage, there may not be the same problem."

The current studies were performed on the aortas of human volunteers. The aorta was chosen for the initial studies because it is one of the largest vessels in the body and it is easily accessible.

Judd sees one of the immediate uses of the new technique on the renal arteries. Constrictions in the renal arteries are common causes of hypertension, and since the new technique does not use contrast agents, patients should be able to better tolerate the procedure, Judd said.

"Since GCFP can image both the magnitude and direction of blood flow, we can also use this new approach to assess the patency of grafts after bypass surgery, shunt procedures and points of attachment of blood vessels," Judd said.

"There is also reason to believe that GCFP might ultimately play an important role in imaging the coronary arteries that supply the heart with blood," Judd continued. "Because of the small size of these arteries and the complex topography of the heart’s left ventricle, more research is needed to get accurate and useful images."

Richard Merritt | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7500

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>