Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duke Scientists Overcome Immune Resistance In Dendritic Cell Vaccines For Cancer

05.04.2004


Scientists have discovered why dendritic cell vaccines do not attack cancer as forcefully as expected, and they have demonstrated how to overcome this constraint by bolstering the vaccines’ tumor-seeking machinery.



The findings, published in the April 4, 2004, issue of Nature Immunology, present a novel method of equipping dendritic cells so they can activate the immune system to fight against cancers, said the researchers from the Duke Comprehensive Cancer Center and the departments of medicine and immunology at Duke University Medical Center.

Dendritic cells are the "private investigators" of the immune system, detecting foreign proteins in the body -- for example from bacteria and viruses -- and presenting them to "fighter" T-cells for destruction. Scientists turn dendritic cells into cancer vaccines by mixing them with genetic material from the patient’s tumor and infusing the treated cells back into the patient. The dendritic cells present the tumor particles – called antigens – to the fighter T cells, as though pointing out the enemy to a battalion of soldiers.


"Dendritic cell vaccines have shown promise in battling cancers in laboratory studies, but they have not met with quite the success in the clinical trials that laboratory studies suggest they should," said Yiping Yang, M.D., Ph.D., assistant professor of medicine and immunology, the lead author and principal investigator of the study. "Our study highlights what element is missing in dendritic cell vaccines that prevents them from activating the immune system, and we’ve shown how to insert that element."

The major problem, said Yang, is that cancer cells are wily invaders, camouflaging themselves as part and parcel of the body in order to escape detection by the immune system. Dendritic cells present the tumor antigen to T-cells, yet T-cells are curiously tolerant to the antigen and fail to act on its threat.

Yang and his team studied why this tolerance occurs by creating an animal model that mimics the same T-cell tolerance that occurs in cancer patients. They compared the behavior of dendritic cell vaccines in the mice against that of viral vaccines, which have their own limitations but seem to engage T-cell aggression without difficulty.

"We knew there was something unique to viral and bacterial pathogens that mammalian cells don’t have," said Yang.

The scientists found that dendritic cell vaccines failed to remove the "brakes" from fighter T-cells that would allow them to attack the cancer. These brakes are known as regulatory T-cells, and they restrain excessive or unwarranted T-cell aggression.

Yang and his team theorized that removing the regulatory T-cells would remove the brakes from the fighter T-cells. Yet removing all restraints could provoke T-cells to attack the body indiscriminately, potentially causing auto-immune reactions.

In contrast, viral vaccines naturally override these cellular brakes as needed, and Yang’s team determined why that occurs: viruses contain their own unique and foreign molecules that mark them as invaders in the body.

These foreign molecules are known as "pathogen-associated molecule patterns" (PAMPs), and they are unique to viruses, bacteria and other pathogens. They reside on the coating of the bacterium or virus and are separate and apart from the cancer antigen, said Yang. When the viral vaccine presents the tumor antigen to fighter T-cells (via the patient’s dendritic cells), it is also presenting its own PAMPs. The dual signaling – in actuality there are three signals from dendritic cells – provide the needed stimulus to energize T cells into action, said Yang.

"Dendritic cells are viewed by the body as self – even when they are loaded with tumor antigen – because the antigen itself is not enough to provoke fighter T cells to act," said Yang. "If you mix dendritic cells with tumor antigen and PAMPs, then you produce a more potent signal that can break T-cell tolerance."

Further, Yang identified the site on the surface of dendritic cells that recognizes the PAMPs and prompts them to silence regulatory T-cells. The sites are called Toll-like receptors, and activating them is critical to temporarily silencing regulatory T-cells.

"We don’t know the specific chain of events that Toll-like receptors activate inside dendritic cells to temporarily silence regulatory T-cells," said Yang. "But we hypothesize that signals enter through the Toll-like receptors and trigger the release of critical cytokines that tell regulatory T-cells to lie dormant."

Viral vaccines naturally accomplish this task on their own, yet they present their own complex array of limitations, said Yang. First, viral vaccines must be laced with the precise strands of tumor DNA (called tumor-specific antigens) that will spark recognition among the fighter T-cells. However, the tumor-specific antigens for most cancers are unknown, and finding them can be extraordinarily time-consuming and costly. In contrast, dendritic cells can be laced with tumor proteins or RNA that already contain tumor-specific antigens – a much easier task than isolating the antigens, said Yang. Second, viral vaccines must be stripped of their potential to cause illness in the patient.

"We want to merge the strengths of viral vaccines with the ease of using a patient’s own immune system to wage war against the cancer," said Yang.

Thus far, Yang and his team have tested the concept successfully in animals and plan to test the viral vaccines and the bolstered dendritic cell vaccines in lymphoma patients within the next several years.

Becky Levine | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7502

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>