Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Real-time monitoring of transplant organs

01.04.2004


Human organs deteriorate rapidly without free-flowing blood. The condition, known as ischemia, can be a problem during surgical operations or the transport of graft organs. MICROTRANS’ answer is a small silicon needle with multiple sensors, capable of continuously measuring the electrical impedance of tissues.



Heart surgeons carefully monitor a beating heart on an electrocardiograph. But if they need to artificially stop the heart during a procedure, these measurements may be lacking for as long as 30 minutes.

In the MICROCARD project, an earlier project funded under the European Commission’s ESPRIT programme, European researchers tested a system that continuously monitors the condition of organs. They came up with a needle-shaped microsensor, carved from a silicon wafer, for inserting directly into an organ. Its chemical sensors assessed parameters such as pH and potassium, but were more accurate in chemical solutions than in living tissues.


So in the follow-up three-year project MICROTRANS, researchers from four countries concentrated on developing and testing sensors that measure electrical impedance. Results showed these sensors are ideal for checking the health of organs during artificially induced ischemia - during cardiac surgery or when transported in a cool-box from the donor to the recipient, a period lasting up to 24 hours.

Doctors currently employ several methods to assess the effects of ischemia on transplant organs; none are very effective or accurate. Most transplant surgeons therefore rely on visual inspections to decide if an organ can be successfully transplanted or not.

The new system provides a much better picture of the organ. Just over a centimetre in length and a less than a millimetre wide, the tiny probe measures the temperature, pH, potassium and impedance of the tissues. "It is very robust and sensitive," says Toni Ivorra, an electronic engineer from the Spanish company coordinating the project, CNM.

The project also developed a module for the cool-boxes used to carry transplant organs. It includes a radio transmitter which sends the probe’s readings to a personal digital assistant (PDA) mounted on the box. If the organ’s temperature rises too much during transport, the system will generate an alarm. At the destination hospital, the surgeon can check the PDA screen or download its data to a computer. The result, say the researchers, is fewer discarded organs and more successful transplants.

This silicon needle may have other niche applications. It could improve food security by monitoring the quality of meat, fruit and vegetables during their storage and/or growth phases.

Price should be no barrier to the commercialisation of this multiprobe microsensor, because the whole system is designed to be disposable. But Ivorra admits that transplant physicians may need convincing that electrical-impedance sensors are better than chemical ones.

Exploitation rights for the patented system are held by project partner Carburos Metálicos (Air Products). It is working with two other partners, i2m and the National Centre for Microelectronics of Barcelona, on an industrial prototype for testing in European hospitals and laboratories. If successful, a system comprising the transplant transport module, the needle, electronics and telemetry equipment could be on the market in two years.

Contact:
Professor Jordi Aguiló
CNM - CSIC
Centro Nacional de Microelectronica
Consejo Superior de Investigaciones Científicas
Campus Universitat Autònoma de Barcelona
E-08193 Bellaterra
Barcelona
Spain
Tel: +34-9-35947700
Fax: +34-9-358014 96
Email: jordi.aguilo@cnm.es

Tara Morris | IST Results
Further information:
http://istresults.cordis.lu/index.cfm?section=news&tpl=article&ID=63704

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>