Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Real-time monitoring of transplant organs

01.04.2004


Human organs deteriorate rapidly without free-flowing blood. The condition, known as ischemia, can be a problem during surgical operations or the transport of graft organs. MICROTRANS’ answer is a small silicon needle with multiple sensors, capable of continuously measuring the electrical impedance of tissues.



Heart surgeons carefully monitor a beating heart on an electrocardiograph. But if they need to artificially stop the heart during a procedure, these measurements may be lacking for as long as 30 minutes.

In the MICROCARD project, an earlier project funded under the European Commission’s ESPRIT programme, European researchers tested a system that continuously monitors the condition of organs. They came up with a needle-shaped microsensor, carved from a silicon wafer, for inserting directly into an organ. Its chemical sensors assessed parameters such as pH and potassium, but were more accurate in chemical solutions than in living tissues.


So in the follow-up three-year project MICROTRANS, researchers from four countries concentrated on developing and testing sensors that measure electrical impedance. Results showed these sensors are ideal for checking the health of organs during artificially induced ischemia - during cardiac surgery or when transported in a cool-box from the donor to the recipient, a period lasting up to 24 hours.

Doctors currently employ several methods to assess the effects of ischemia on transplant organs; none are very effective or accurate. Most transplant surgeons therefore rely on visual inspections to decide if an organ can be successfully transplanted or not.

The new system provides a much better picture of the organ. Just over a centimetre in length and a less than a millimetre wide, the tiny probe measures the temperature, pH, potassium and impedance of the tissues. "It is very robust and sensitive," says Toni Ivorra, an electronic engineer from the Spanish company coordinating the project, CNM.

The project also developed a module for the cool-boxes used to carry transplant organs. It includes a radio transmitter which sends the probe’s readings to a personal digital assistant (PDA) mounted on the box. If the organ’s temperature rises too much during transport, the system will generate an alarm. At the destination hospital, the surgeon can check the PDA screen or download its data to a computer. The result, say the researchers, is fewer discarded organs and more successful transplants.

This silicon needle may have other niche applications. It could improve food security by monitoring the quality of meat, fruit and vegetables during their storage and/or growth phases.

Price should be no barrier to the commercialisation of this multiprobe microsensor, because the whole system is designed to be disposable. But Ivorra admits that transplant physicians may need convincing that electrical-impedance sensors are better than chemical ones.

Exploitation rights for the patented system are held by project partner Carburos Metálicos (Air Products). It is working with two other partners, i2m and the National Centre for Microelectronics of Barcelona, on an industrial prototype for testing in European hospitals and laboratories. If successful, a system comprising the transplant transport module, the needle, electronics and telemetry equipment could be on the market in two years.

Contact:
Professor Jordi Aguiló
CNM - CSIC
Centro Nacional de Microelectronica
Consejo Superior de Investigaciones Científicas
Campus Universitat Autònoma de Barcelona
E-08193 Bellaterra
Barcelona
Spain
Tel: +34-9-35947700
Fax: +34-9-358014 96
Email: jordi.aguilo@cnm.es

Tara Morris | IST Results
Further information:
http://istresults.cordis.lu/index.cfm?section=news&tpl=article&ID=63704

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>