Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Popular chewing gum eliminates bacteria that cause bad breath

01.04.2004


Chewing gum may just be the latest in a growing list of functional foods



Researchers at the University of Illinois at Chicago have found that Big Red -- the popular cinnamon-flavored chewing gum made by Wrigley’s -- reduced bacteria in the mouth that cause bad breath.

The finding was presented at the recent annual meeting of the International Association for Dental Research.


Given that the gum contains cinnamic aldehyde, a plant essential oil used for flavoring, the result was not surprising, said Christine Wu, professor of periodontics and associate dean for research at the UIC College of Dentistry. Wu, who searches for natural antibacterial agents from plant sources that suppress oral pathogens, had tested several plant essential oils and found that they inhibited the growth of bacteria responsible for cavities and periodontal infections.

"In laboratory tests, some of these oils also prevented the growth of three species of oral bacteria associated with bad breath and the production of volatile compounds that cause the unpleasant smell," Wu said.

The laboratory findings and interest from the Wrigley Company in Chicago prompted Wu to launch a clinical trial of the effects of chewing gum on oral bacteria.

In the study, 15 subjects chewed one of three gums for 20 minutes: Big Red, the same gum with natural flavors but no cinnamic aldehyde, or a gum base with neither flavors or oil.

Twenty minutes after the subjects stopped chewing the gum, their saliva was tested and compared with samples collected before chewing began.

Microbiological analysis showed that Big Red reduced by more than 50 percent the concentration of anaerobic bacteria in the saliva. It was particularly effective against anaerobic bacteria residing at the back of the tongue, reducing the population by 43 percent. These bacteria produce volatile sulfur compounds through the putrefaction of proteins and are considered the major contributors to halitosis, or bad breath.

The gum that contained natural flavors but no cinnamic aldehyde also reduced the number of bacteria by about 40 percent.

"The result was puzzling at first, but after compiling our data, we were informed that the natural flavors included a small amount of a plant extract," Wu said. "We had already shown in previous lab studies that this extract suppresses the growth of oral pathogens."

The gum base without flavors or cinnamic aldehyde produced no significant reduction in oral bacteria.

"Our study shows that chewing gum can be a functional food, having a significant impact on oral hygiene over the short term, if it contains antimicrobial agents such as cinnamic aldehyde or other natural active compounds," Wu said. "The product doesn’t just mask foul mouth odor; it eliminates the bacteria that cause it, at least temporarily."


Min Zhu, research associate in Wu’s laboratory, collaborated in the study, which was funded by the Wm. Wrigley Jr. Company.

Sharon Butler | EurekAlert!
Further information:
http://www.uic.edu/
http://dentistry.uic.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>