Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Popular chewing gum eliminates bacteria that cause bad breath

01.04.2004


Chewing gum may just be the latest in a growing list of functional foods



Researchers at the University of Illinois at Chicago have found that Big Red -- the popular cinnamon-flavored chewing gum made by Wrigley’s -- reduced bacteria in the mouth that cause bad breath.

The finding was presented at the recent annual meeting of the International Association for Dental Research.


Given that the gum contains cinnamic aldehyde, a plant essential oil used for flavoring, the result was not surprising, said Christine Wu, professor of periodontics and associate dean for research at the UIC College of Dentistry. Wu, who searches for natural antibacterial agents from plant sources that suppress oral pathogens, had tested several plant essential oils and found that they inhibited the growth of bacteria responsible for cavities and periodontal infections.

"In laboratory tests, some of these oils also prevented the growth of three species of oral bacteria associated with bad breath and the production of volatile compounds that cause the unpleasant smell," Wu said.

The laboratory findings and interest from the Wrigley Company in Chicago prompted Wu to launch a clinical trial of the effects of chewing gum on oral bacteria.

In the study, 15 subjects chewed one of three gums for 20 minutes: Big Red, the same gum with natural flavors but no cinnamic aldehyde, or a gum base with neither flavors or oil.

Twenty minutes after the subjects stopped chewing the gum, their saliva was tested and compared with samples collected before chewing began.

Microbiological analysis showed that Big Red reduced by more than 50 percent the concentration of anaerobic bacteria in the saliva. It was particularly effective against anaerobic bacteria residing at the back of the tongue, reducing the population by 43 percent. These bacteria produce volatile sulfur compounds through the putrefaction of proteins and are considered the major contributors to halitosis, or bad breath.

The gum that contained natural flavors but no cinnamic aldehyde also reduced the number of bacteria by about 40 percent.

"The result was puzzling at first, but after compiling our data, we were informed that the natural flavors included a small amount of a plant extract," Wu said. "We had already shown in previous lab studies that this extract suppresses the growth of oral pathogens."

The gum base without flavors or cinnamic aldehyde produced no significant reduction in oral bacteria.

"Our study shows that chewing gum can be a functional food, having a significant impact on oral hygiene over the short term, if it contains antimicrobial agents such as cinnamic aldehyde or other natural active compounds," Wu said. "The product doesn’t just mask foul mouth odor; it eliminates the bacteria that cause it, at least temporarily."


Min Zhu, research associate in Wu’s laboratory, collaborated in the study, which was funded by the Wm. Wrigley Jr. Company.

Sharon Butler | EurekAlert!
Further information:
http://www.uic.edu/
http://dentistry.uic.edu

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>