Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Popular chewing gum eliminates bacteria that cause bad breath


Chewing gum may just be the latest in a growing list of functional foods

Researchers at the University of Illinois at Chicago have found that Big Red -- the popular cinnamon-flavored chewing gum made by Wrigley’s -- reduced bacteria in the mouth that cause bad breath.

The finding was presented at the recent annual meeting of the International Association for Dental Research.

Given that the gum contains cinnamic aldehyde, a plant essential oil used for flavoring, the result was not surprising, said Christine Wu, professor of periodontics and associate dean for research at the UIC College of Dentistry. Wu, who searches for natural antibacterial agents from plant sources that suppress oral pathogens, had tested several plant essential oils and found that they inhibited the growth of bacteria responsible for cavities and periodontal infections.

"In laboratory tests, some of these oils also prevented the growth of three species of oral bacteria associated with bad breath and the production of volatile compounds that cause the unpleasant smell," Wu said.

The laboratory findings and interest from the Wrigley Company in Chicago prompted Wu to launch a clinical trial of the effects of chewing gum on oral bacteria.

In the study, 15 subjects chewed one of three gums for 20 minutes: Big Red, the same gum with natural flavors but no cinnamic aldehyde, or a gum base with neither flavors or oil.

Twenty minutes after the subjects stopped chewing the gum, their saliva was tested and compared with samples collected before chewing began.

Microbiological analysis showed that Big Red reduced by more than 50 percent the concentration of anaerobic bacteria in the saliva. It was particularly effective against anaerobic bacteria residing at the back of the tongue, reducing the population by 43 percent. These bacteria produce volatile sulfur compounds through the putrefaction of proteins and are considered the major contributors to halitosis, or bad breath.

The gum that contained natural flavors but no cinnamic aldehyde also reduced the number of bacteria by about 40 percent.

"The result was puzzling at first, but after compiling our data, we were informed that the natural flavors included a small amount of a plant extract," Wu said. "We had already shown in previous lab studies that this extract suppresses the growth of oral pathogens."

The gum base without flavors or cinnamic aldehyde produced no significant reduction in oral bacteria.

"Our study shows that chewing gum can be a functional food, having a significant impact on oral hygiene over the short term, if it contains antimicrobial agents such as cinnamic aldehyde or other natural active compounds," Wu said. "The product doesn’t just mask foul mouth odor; it eliminates the bacteria that cause it, at least temporarily."

Min Zhu, research associate in Wu’s laboratory, collaborated in the study, which was funded by the Wm. Wrigley Jr. Company.

Sharon Butler | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>