Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic researchers discover green tea component helps kill leukemia cells

01.04.2004


Mayo Clinic researchers have discovered that a component in green tea helps kill cells of the most common leukemia in the United States.



The research using laboratory cell cultures shows that a component of green tea known as epigallocatechin-3-gallate (EGCG) [epi-gallo-cat-ekin-3-gal-ate] helps kill leukemia cells by interrupting the communication signals they need to survive. The findings are reported in an early electronic article in the journal Blood (http://www.bloodjournal.org/cgi/reprint/2003-08-2763v1).

The leukemia cells studied were from patients with B-cell chronic lymphocytic leukemia (CLL) -- most often diagnosed in patients in their mid-to-late 60s. Currently, there is no cure for CLL, though chemotherapy is administered in the most severe cases. The Mayo Clinic study, led by Neil E. Kay, M.D., shows that green tea’s EGCG interrupted survival signals, prompting leukemia cells to die in eight of 10 patient samples tested in the laboratory.


Says Dr. Kay: "We’re continuing to look for therapeutic agents that are nontoxic to the patient but kill cancer cells, and this finding with EGCG is an excellent start. Understanding this mechanism and getting these positive early results gives us a lot to work with in terms of offering patients with this disease more effective, easily tolerated therapies earlier."

About the Leukemia called CLL

CLL affects individuals differently in the pace at which it progresses. Some patients may live with it for decades and not require treatment, while others need immediate treatment, and some die within months despite therapy.

Because the course of the CLL is so individualistic and unpredictable, physicians have historically adopted an attitude of "watchful waiting" with early-stage CLL patients. This rationale -- to spare elderly patients exposure to toxic chemotherapy -- has been challenged recently as new tests have improved physicians’ ability to identify early stage patients who have a more aggressive form of the cancer.

As a result, much CLL research is focused on identifying which initial-stage patients should be treated earlier in the course of their disease -- the topic of another recent article by Mayo Clinic researchers (Blood, Feb 2004; 103: 1202 - 1210.)

Significance of the Mayo Clinic Finding

The CLL characteristics make this finding even more important, as it suggests a new, nontoxic treatment. First author Yean K. Lee comments, "With these findings we may be able to pursue the idea of culling out early-stage patients who have historically not been treated and perhaps use an EGCG-based treatment. That’s our next step with our research."

Mayo Clinic CLL researcher Tait D. Shanafelt, M.D., is likewise encouraged. "Our research goal is to identify new treatments for CLL that have a favorable side effect profile and can be used in patients with early stage disease to prevent progression. I think we’re getting there."

Why Green Tea?

Mayo Clinic researchers focused on green tea for at least three reasons. One, since the 1970s, epidemiological studies of cancer have shown that in parts of the world where green tea is consumed, the incidence of solid tumor cancers such as breast, lung and gastrointestinal cancers is lower. Secondly, mouse-model testing of green tea’s cancer-prevention properties has shown they protect against solid tumors. And three, in the laboratory, the EGCG component of green tea has been proven to induce death in cancer cells from solid tumors.

The Mayo Clinic research suggests EGCG works by inhibiting a pathway in the leukemia cells related to angiogenesis -- the complex process that maintains nourishing blood flow to a biological structure, in this case a cancer cell.

Bob Nellis | EurekAlert!
Further information:
http://www.bloodjournal.org/cgi/reprint/2003-08-2763v1
http://www.mayo.edu/

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>