Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pre-Term Labor Drug Sensitizes Brain to Pesticide Injury

31.03.2004


A drug commonly prescribed to halt pre-term labor and stave off premature birth might leave the brains of children susceptible to other chemicals ubiquitously present in the environment, according to research conducted on laboratory animals by Duke University Medical Center pharmacologists. Their new study found that rats exposed to the pre-term labor drug terbutaline suffer greater brain cell damage than those not given the drug upon secondary exposure to the insecticide chlorpyrifos.


Theodore Slotkin, Ph.D.
PHOTO CREDIT: Duke University Medical Center



The double exposure caused damage to brain regions known to play a role in learning and memory, the team reported in the March 2004 issue of Toxicology and Applied Pharmacology. The result might therefore help to explain earlier suggestions that children whose mothers are administered terbutaline suffer cognitive deficits. The National Institutes of Health supported the research.

Premature labor occurs in approximately 20 percent of all pregnancies in the United States. Of those, an estimated 1 million women annually are treated with terbutaline or related drugs to halt the early contractions. The drugs administered to pregnant women also penetrate to the fetus where they affect brain development.


The work highlights the synergistic and unpredictable effects that exposure to multiple chemicals can have on the brain, said senior author of the study Theodore Slotkin, Ph.D., professor of pharmacology and cancer biology at Duke. Moreover, just as some gene variants confer heightened disease risk, the study suggests that certain early drug or chemical exposures can predispose people to particular ailments, he added.

"The adverse effects of sequential exposure to the two compounds on certain brain characteristics were more than the sum of the two agents’ independent effects," Slotkin said. "Our findings suggest that exposure to drugs like terbutaline early in development can leave individuals set on a hair trigger for further problems when subsequently faced with environmental chemicals."

Sensitive subgroups should be taken into consideration when determining safe levels of the chemicals in the household and the environment, Slotkin said.

Chlorpyrifos was one of the most commonly used insecticides in the United States for both agriculture and household uses prior to the year 2000 when the EPA began restricting the chemical from home use in stages. However, chlorpyrifos is still widely used for agricultural purposes and residues of the insecticide can occur on produce.

The highest exposures to environmental contaminants, including chlorpyrifos, occur in young children due to the fact that they crawl across the ground and other surfaces and put objects in their mouths, Slotkin said. Children also consume a greater volume of food and water -- often containing pesticides -- relative to their body weight compared to adults. Studies of chlorpyrifos levels in school-age children have found that virtually everyone is exposed, he said.

The researchers administered terbutaline alone, chlorpyrifos alone or terbutaline followed by chlorpyrifos to three groups of young rats. Rats received terbutaline at 2 to 4 days old, a time equivalent to the early third trimester of human development. Chlorpyrifos was administered at day 11 to 14. A fourth untreated group served as a control.

Both chemicals independently caused brain injuries not seen in the control rats, including the loss of brain cells and the nerve cell projections critical to communication among neurons. The effects persisted into adulthood.

The combined chemical treatment further aggravated the chemicals’ damaging effects on the brain, the team reported. The brains of rats exposed to both chemicals also showed reduced nerve cell activity that the researchers did not observe in rats exposed to either chemical alone.

Furthermore, portions of the brain central to learning and memory, including the hippocampus, suffered significant loss of brain cells and nerve cell projections in rats exposed to both chemicals. Rats administered either chemical alone showed much smaller effects on these regions, the researchers said.

"It is increasingly clear that environmental toxicants target specific human subpopulations," said Slotkin. "This study suggests that early drug or chemical exposures might underlie some of these differences in susceptibility. We need to start looking for such vulnerable groups and considering them when making decisions about legislation. It is not adequate to set the allowable concentrations for certain chemicals at levels that might be unsafe for large segments of the population."

Coauthors on the study included Melissa Rhodes, Ph.D., Frederic Seidler, Ph.D., Dan Qiao, Ph.D., Charlotte Tate and Mandy Cousins, all of Duke.

Kendall Morgan | dukemed news
Further information:
http://www.dukemednews.org/news/article.php?id=7496

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>