Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful stem cells harnessed to search for cancer metastasis

30.03.2004


Stem cells that act as seek-and-destroy missiles appear to be able to find cancer wherever it hides out - at least, so far, in animals.



This novel approach at gene therapy, reported by researchers from The University of Texas M. D. Anderson Cancer Center, may have use in a wide variety of both solid and blood cancers.

"This addresses our great need for cancer gene therapies aimed at curbing the metastatic spread of cancer cells," says Michael Andreeff, M.D., Ph.D., professor in the Departments of Blood and Marrow Transplantation and Leukemia. "It is exciting because it is an entirely new way of thinking about gene therapy and not just a twist of an old idea."


Andreeff will present both the concept, and a series of supporting animal studies, at the annual meeting of the American Association for Cancer Research.

The novel strategy takes advantage of the fact that tumors attract a certain kind of stem cell, mesenchymal progenitor cells (MSC), which act as the body’s natural tissue repair system. These unspecialized cells migrate to an injury by responding to signals from the area, and there they develop the kind of connective tissue that is needed to repair the wound.

But they also respond to tumors -- often characterized as "never healing wounds" -- which "call" the stem cells to help build up normal tissue that is needed to support the cancer, says Andreeff.

Andreeff and a team of researchers removed a small number of MSC from the bone marrow, expanded them in the laboratory, and genetically altered the stem cells with a variety of therapeutic genes. When intravenously injected into tumor-bearing mice, the millions of engineered stem cells engraft in the cancer, and activate their genetic payload, which then attacks the cancer.

Andreeff will present animal data suggesting that gene modified MSC can inhibit the growth of leukemias, lung metastases of melanomas and breast cancer, ovarian and brain tumors. For example, MSC gene therapy cured 70 percent of mice implanted with one kind of human ovarian cancer. So far, researchers delivered interferon alpha and beta, and an oncolytic (tumor-destroying) virus into the tumors.

"This drug delivery system is attracted to cancers, both primary and metastatic, and anti-tumor effects are observed when the cells integrate into the tumor microenvironment" says Andreeff. "The most important discovery here is that these cells are capable of migrating from the bone marrow or blood circulation selectively into tumors and produce anti-tumor agents only at the sites of these tumors and their metatasis."

Julie Penne | EurekAlert!
Further information:
http://www.mdanderson.org/

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>