Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advances in prevention and treatment research hold promise for ’pipeline’

30.03.2004


Researchers tap modified plant viruses to ward off cervical cancer-causing infections; and a Pied Piper progesterone receptor antagonist leads breast cancer cells toward death



New vaccinations to prevent infections that lead to cervical cancer and targeted therapeutics aimed at breast cancer were examples of research highlights presented by scientists today at the 95th Annual Meeting of the American Association for Cancer Research. Scientists described advances that feed into the drug development ’pipeline,’ and show strong promise for controlling existing tumors or addressing the pathogen that causes tumors.

New progesterone receptor antagonists preventing carcinogen induced breast cancer in rats


A novel pharmaceutical that inhibits progesterone receptor activity in breast cancer cells may reduce tumor mass in patients, according to scientists at Schering AG Corporate Research, Experimental Oncology based in Berlin, Germany.

Progesterone is a steroid hormone that activates its receptors in the nucleus of cells such as those found in the breast or uterus. In breast cancer cells, progesterone induces a cascade of biological events essential for cell proliferation. Proliferation leads to tumor development.

"It seems obvious that progesterone receptor antagonists could therefore block the growth of breast tumors that functionally express progesterone receptors," said Jens Hoffman, MS, Ph.D., the studies lead investigator.

Hoffmann and his colleagues from the Schering AG Corporate Research Business Area Oncology tested the new progesterone receptor antagonist in tumor cell models and observed strong antiproliferative activity. The progesterone receptor antagonist also prophylactically prevented the development of breast tumors following a chemical challenge designed to induce the growth of the breast tumors in rodent models.

"Our results revealed that the biological response to a progesterone antagonist does not seem to be only the result of competition of progesterone but rather may be accompanied by additional mechanisms," Hoffmann said. "The progesterone receptor antagonist appears to induce programmed cell death, or apoptosis."

In comparison to other therapeutics that target steroid receptors to reduce tumor growth, such as the anti-estrogen tamoxifen, the agent studied by Hoffmann and his colleagues is unique because it does not just stop the cell from growing and dividing; rather, it appears to prompt the cell to die.

"With the ability to trigger apoptosis in cancerous breast cells, this novel progesterone receptor antagonist may be a promising option for clinical breast cancer therapy or prevention," Hoffmann said.

Virus particles displaying linear epitopes from papillomavirus structural proteins: next generation vaccines to prevent papillomavirus-associated cancers

Plant viruses show promise as carriers for new low-cost, antiviral vaccinations against human papillomaviruses (HPV) that cause benign and malignant tumors, according to research presented today.

A consortium of researchers from Large Scale Biology Corporation (LSBC), Vacaville, Calif., and the Department of Microbiology and Immunology, Penn State University College of Medicine developed the anti-HPV treatment by combining parts of papillomavirus structural proteins with the tobacco mosaic virus (TMV). Alison McCormick, Ph.D., Senior Scientist at LSBC, presented preliminary findings indicating that the virus-combining technology resulted in vaccinations that promoted antibody responses to rabbit papillomavirus types that are used as models for human papillomavirus disease, as well as to HPV strains associated with high risk for reproductive organ cancers.

HPV comprise a family of viruses that are often transmitted through sexual contact. While HPVs can cause genital warts, certain strains of the virus are known to induce cervical, vulvar and anal cancers, and are implicated in the development of other cancers including those to the head and neck. HPV is present in more than 9 of ten cases of all cervical cancers.

McCormick noted previous research demonstrated that virus-like particles from HPV proteins were very effective in generating an antibody response to a particular strain of the virus, but that it is unlikely that these vaccines would protect against all of the strains of HPV that cause human genital cancers. Furthermore, the technology to generate the virus-like particles posed expensive manufacturing challenges.

By incorporating the immunogenic peptides from papillomaviruses into the TMV virions, researchers at Large Scale Biology Corporation developed a relatively inexpensive, efficient technology to produce a viral antigen that generated strong peptide-specific immune responses in mouse models and antibodies capable of generating partial protective response in the cottontail rabbit model. McCormick and her colleagues are now performing research focused on improving these novel vaccines against papillomaviruses through research funded by the National Institutes of Standards and Technology’s Advanced Technology Program.

"The key to preventing reproductive tract cancers caused by HPV is to block the initial infection," McCormick said. "Generating vaccines that protect against a wide array of HPV strains is a priority, since many different strains of HPV cause cancer. Without persistent viral infection, cancers caused by HPV are expected to fall in incidence."

Approximately 5,000 women die from cervical cancer each year in the United States. The Center for Disease Control and Prevention estimates that 5.5 million new cases of genital HPV occur yearly in the United States. As many as 24 million people in the U.S. are infected with HPV at any given time. An estimated 1 million women in the U.S. have cervical dysplasia associated with HPV, with 55,000 bearing in situ carcinomas. Approximately 15,000 U.S. women have cervical cancer.

Globally, HPV-induced cervical cancers are the most common cancers in women in developing countries. One half-million new cases of cervical cancer occur yearly across the globe, leading to 300,000 deaths. 80 percent of these occur in developing countries, and 90-95 percent are associated with HPV infection.

Control of the emerging worldwide health problem caused by HPV could best be accomplished through development of preventative and therapeutic vaccines against a wide variety of papillomavirus types. Ideally, these vaccines should be manufactured in abundant supply at a cost that is compatible with industrialized as well as developing world economies. LSBC’s novel plant-virus-based system could offer one solution to this growing medical and public health need.


Founded in 1907, the American Association for Cancer Research is a professional society of more than 22,000 laboratory, translational, and clinical scientists engaged in all areas of cancer research in the United States and in more than 60 other countries. AACR’s mission is to accelerate the prevention and cure of cancer through research, education, communication, and advocacy. Its principal activities include the publication of five major peer-reviewed scientific journals: Cancer Research; Clinical Cancer Research; Molecular Cancer Therapeutics; Molecular Cancer Research; and Cancer Epidemiology, Biomarkers & Prevention. AACR’s Annual Meetings attract more than 15,000 participants who share new and significant discoveries in the cancer field. Specialty meetings, held throughout the year, focus on the latest developments in all areas of cancer research.

Aimee Frank | EurekAlert!
Further information:
http://www.aacr.org/

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>