Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advances in prevention and treatment research hold promise for ’pipeline’

30.03.2004


Researchers tap modified plant viruses to ward off cervical cancer-causing infections; and a Pied Piper progesterone receptor antagonist leads breast cancer cells toward death



New vaccinations to prevent infections that lead to cervical cancer and targeted therapeutics aimed at breast cancer were examples of research highlights presented by scientists today at the 95th Annual Meeting of the American Association for Cancer Research. Scientists described advances that feed into the drug development ’pipeline,’ and show strong promise for controlling existing tumors or addressing the pathogen that causes tumors.

New progesterone receptor antagonists preventing carcinogen induced breast cancer in rats


A novel pharmaceutical that inhibits progesterone receptor activity in breast cancer cells may reduce tumor mass in patients, according to scientists at Schering AG Corporate Research, Experimental Oncology based in Berlin, Germany.

Progesterone is a steroid hormone that activates its receptors in the nucleus of cells such as those found in the breast or uterus. In breast cancer cells, progesterone induces a cascade of biological events essential for cell proliferation. Proliferation leads to tumor development.

"It seems obvious that progesterone receptor antagonists could therefore block the growth of breast tumors that functionally express progesterone receptors," said Jens Hoffman, MS, Ph.D., the studies lead investigator.

Hoffmann and his colleagues from the Schering AG Corporate Research Business Area Oncology tested the new progesterone receptor antagonist in tumor cell models and observed strong antiproliferative activity. The progesterone receptor antagonist also prophylactically prevented the development of breast tumors following a chemical challenge designed to induce the growth of the breast tumors in rodent models.

"Our results revealed that the biological response to a progesterone antagonist does not seem to be only the result of competition of progesterone but rather may be accompanied by additional mechanisms," Hoffmann said. "The progesterone receptor antagonist appears to induce programmed cell death, or apoptosis."

In comparison to other therapeutics that target steroid receptors to reduce tumor growth, such as the anti-estrogen tamoxifen, the agent studied by Hoffmann and his colleagues is unique because it does not just stop the cell from growing and dividing; rather, it appears to prompt the cell to die.

"With the ability to trigger apoptosis in cancerous breast cells, this novel progesterone receptor antagonist may be a promising option for clinical breast cancer therapy or prevention," Hoffmann said.

Virus particles displaying linear epitopes from papillomavirus structural proteins: next generation vaccines to prevent papillomavirus-associated cancers

Plant viruses show promise as carriers for new low-cost, antiviral vaccinations against human papillomaviruses (HPV) that cause benign and malignant tumors, according to research presented today.

A consortium of researchers from Large Scale Biology Corporation (LSBC), Vacaville, Calif., and the Department of Microbiology and Immunology, Penn State University College of Medicine developed the anti-HPV treatment by combining parts of papillomavirus structural proteins with the tobacco mosaic virus (TMV). Alison McCormick, Ph.D., Senior Scientist at LSBC, presented preliminary findings indicating that the virus-combining technology resulted in vaccinations that promoted antibody responses to rabbit papillomavirus types that are used as models for human papillomavirus disease, as well as to HPV strains associated with high risk for reproductive organ cancers.

HPV comprise a family of viruses that are often transmitted through sexual contact. While HPVs can cause genital warts, certain strains of the virus are known to induce cervical, vulvar and anal cancers, and are implicated in the development of other cancers including those to the head and neck. HPV is present in more than 9 of ten cases of all cervical cancers.

McCormick noted previous research demonstrated that virus-like particles from HPV proteins were very effective in generating an antibody response to a particular strain of the virus, but that it is unlikely that these vaccines would protect against all of the strains of HPV that cause human genital cancers. Furthermore, the technology to generate the virus-like particles posed expensive manufacturing challenges.

By incorporating the immunogenic peptides from papillomaviruses into the TMV virions, researchers at Large Scale Biology Corporation developed a relatively inexpensive, efficient technology to produce a viral antigen that generated strong peptide-specific immune responses in mouse models and antibodies capable of generating partial protective response in the cottontail rabbit model. McCormick and her colleagues are now performing research focused on improving these novel vaccines against papillomaviruses through research funded by the National Institutes of Standards and Technology’s Advanced Technology Program.

"The key to preventing reproductive tract cancers caused by HPV is to block the initial infection," McCormick said. "Generating vaccines that protect against a wide array of HPV strains is a priority, since many different strains of HPV cause cancer. Without persistent viral infection, cancers caused by HPV are expected to fall in incidence."

Approximately 5,000 women die from cervical cancer each year in the United States. The Center for Disease Control and Prevention estimates that 5.5 million new cases of genital HPV occur yearly in the United States. As many as 24 million people in the U.S. are infected with HPV at any given time. An estimated 1 million women in the U.S. have cervical dysplasia associated with HPV, with 55,000 bearing in situ carcinomas. Approximately 15,000 U.S. women have cervical cancer.

Globally, HPV-induced cervical cancers are the most common cancers in women in developing countries. One half-million new cases of cervical cancer occur yearly across the globe, leading to 300,000 deaths. 80 percent of these occur in developing countries, and 90-95 percent are associated with HPV infection.

Control of the emerging worldwide health problem caused by HPV could best be accomplished through development of preventative and therapeutic vaccines against a wide variety of papillomavirus types. Ideally, these vaccines should be manufactured in abundant supply at a cost that is compatible with industrialized as well as developing world economies. LSBC’s novel plant-virus-based system could offer one solution to this growing medical and public health need.


Founded in 1907, the American Association for Cancer Research is a professional society of more than 22,000 laboratory, translational, and clinical scientists engaged in all areas of cancer research in the United States and in more than 60 other countries. AACR’s mission is to accelerate the prevention and cure of cancer through research, education, communication, and advocacy. Its principal activities include the publication of five major peer-reviewed scientific journals: Cancer Research; Clinical Cancer Research; Molecular Cancer Therapeutics; Molecular Cancer Research; and Cancer Epidemiology, Biomarkers & Prevention. AACR’s Annual Meetings attract more than 15,000 participants who share new and significant discoveries in the cancer field. Specialty meetings, held throughout the year, focus on the latest developments in all areas of cancer research.

Aimee Frank | EurekAlert!
Further information:
http://www.aacr.org/

More articles from Health and Medicine:

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

New photoacoustic technique detects gases at parts-per-quadrillion level

28.06.2017 | Physics and Astronomy

Funding of Collaborative Research Center developing nanomaterials for cancer immunotherapy extended

28.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>