Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advances in prevention and treatment research hold promise for ’pipeline’

30.03.2004


Researchers tap modified plant viruses to ward off cervical cancer-causing infections; and a Pied Piper progesterone receptor antagonist leads breast cancer cells toward death



New vaccinations to prevent infections that lead to cervical cancer and targeted therapeutics aimed at breast cancer were examples of research highlights presented by scientists today at the 95th Annual Meeting of the American Association for Cancer Research. Scientists described advances that feed into the drug development ’pipeline,’ and show strong promise for controlling existing tumors or addressing the pathogen that causes tumors.

New progesterone receptor antagonists preventing carcinogen induced breast cancer in rats


A novel pharmaceutical that inhibits progesterone receptor activity in breast cancer cells may reduce tumor mass in patients, according to scientists at Schering AG Corporate Research, Experimental Oncology based in Berlin, Germany.

Progesterone is a steroid hormone that activates its receptors in the nucleus of cells such as those found in the breast or uterus. In breast cancer cells, progesterone induces a cascade of biological events essential for cell proliferation. Proliferation leads to tumor development.

"It seems obvious that progesterone receptor antagonists could therefore block the growth of breast tumors that functionally express progesterone receptors," said Jens Hoffman, MS, Ph.D., the studies lead investigator.

Hoffmann and his colleagues from the Schering AG Corporate Research Business Area Oncology tested the new progesterone receptor antagonist in tumor cell models and observed strong antiproliferative activity. The progesterone receptor antagonist also prophylactically prevented the development of breast tumors following a chemical challenge designed to induce the growth of the breast tumors in rodent models.

"Our results revealed that the biological response to a progesterone antagonist does not seem to be only the result of competition of progesterone but rather may be accompanied by additional mechanisms," Hoffmann said. "The progesterone receptor antagonist appears to induce programmed cell death, or apoptosis."

In comparison to other therapeutics that target steroid receptors to reduce tumor growth, such as the anti-estrogen tamoxifen, the agent studied by Hoffmann and his colleagues is unique because it does not just stop the cell from growing and dividing; rather, it appears to prompt the cell to die.

"With the ability to trigger apoptosis in cancerous breast cells, this novel progesterone receptor antagonist may be a promising option for clinical breast cancer therapy or prevention," Hoffmann said.

Virus particles displaying linear epitopes from papillomavirus structural proteins: next generation vaccines to prevent papillomavirus-associated cancers

Plant viruses show promise as carriers for new low-cost, antiviral vaccinations against human papillomaviruses (HPV) that cause benign and malignant tumors, according to research presented today.

A consortium of researchers from Large Scale Biology Corporation (LSBC), Vacaville, Calif., and the Department of Microbiology and Immunology, Penn State University College of Medicine developed the anti-HPV treatment by combining parts of papillomavirus structural proteins with the tobacco mosaic virus (TMV). Alison McCormick, Ph.D., Senior Scientist at LSBC, presented preliminary findings indicating that the virus-combining technology resulted in vaccinations that promoted antibody responses to rabbit papillomavirus types that are used as models for human papillomavirus disease, as well as to HPV strains associated with high risk for reproductive organ cancers.

HPV comprise a family of viruses that are often transmitted through sexual contact. While HPVs can cause genital warts, certain strains of the virus are known to induce cervical, vulvar and anal cancers, and are implicated in the development of other cancers including those to the head and neck. HPV is present in more than 9 of ten cases of all cervical cancers.

McCormick noted previous research demonstrated that virus-like particles from HPV proteins were very effective in generating an antibody response to a particular strain of the virus, but that it is unlikely that these vaccines would protect against all of the strains of HPV that cause human genital cancers. Furthermore, the technology to generate the virus-like particles posed expensive manufacturing challenges.

By incorporating the immunogenic peptides from papillomaviruses into the TMV virions, researchers at Large Scale Biology Corporation developed a relatively inexpensive, efficient technology to produce a viral antigen that generated strong peptide-specific immune responses in mouse models and antibodies capable of generating partial protective response in the cottontail rabbit model. McCormick and her colleagues are now performing research focused on improving these novel vaccines against papillomaviruses through research funded by the National Institutes of Standards and Technology’s Advanced Technology Program.

"The key to preventing reproductive tract cancers caused by HPV is to block the initial infection," McCormick said. "Generating vaccines that protect against a wide array of HPV strains is a priority, since many different strains of HPV cause cancer. Without persistent viral infection, cancers caused by HPV are expected to fall in incidence."

Approximately 5,000 women die from cervical cancer each year in the United States. The Center for Disease Control and Prevention estimates that 5.5 million new cases of genital HPV occur yearly in the United States. As many as 24 million people in the U.S. are infected with HPV at any given time. An estimated 1 million women in the U.S. have cervical dysplasia associated with HPV, with 55,000 bearing in situ carcinomas. Approximately 15,000 U.S. women have cervical cancer.

Globally, HPV-induced cervical cancers are the most common cancers in women in developing countries. One half-million new cases of cervical cancer occur yearly across the globe, leading to 300,000 deaths. 80 percent of these occur in developing countries, and 90-95 percent are associated with HPV infection.

Control of the emerging worldwide health problem caused by HPV could best be accomplished through development of preventative and therapeutic vaccines against a wide variety of papillomavirus types. Ideally, these vaccines should be manufactured in abundant supply at a cost that is compatible with industrialized as well as developing world economies. LSBC’s novel plant-virus-based system could offer one solution to this growing medical and public health need.


Founded in 1907, the American Association for Cancer Research is a professional society of more than 22,000 laboratory, translational, and clinical scientists engaged in all areas of cancer research in the United States and in more than 60 other countries. AACR’s mission is to accelerate the prevention and cure of cancer through research, education, communication, and advocacy. Its principal activities include the publication of five major peer-reviewed scientific journals: Cancer Research; Clinical Cancer Research; Molecular Cancer Therapeutics; Molecular Cancer Research; and Cancer Epidemiology, Biomarkers & Prevention. AACR’s Annual Meetings attract more than 15,000 participants who share new and significant discoveries in the cancer field. Specialty meetings, held throughout the year, focus on the latest developments in all areas of cancer research.

Aimee Frank | EurekAlert!
Further information:
http://www.aacr.org/

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>