Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


An alternative to bone-marrow donation


Researchers have developed a method to reconstitute bone marrow and blood cells from embryonic stem (ES) cells. As reported in The Journal of Experimental Medicine, this method was effective even in genetically mismatched mice. If the same is true in humans, this would remove the need to find genetically matched human bone-marrow donors for patients with leukemia, immune deficiencies and autoimmune diseases.

ES cells are cells derived from embryos that have the potential to grow into many different cell types. Richard Burt and colleagues identified the most effective mix of growth factors to induce mouse ES cell lines to develop into bone-marrow and blood precursor cells in culture. They also devised a method to select the best cells from these cultures. Injection of the selected cells into the bone marrow of mice that had been depleted of their own bone-marrow cells resulted in restoration of blood cells, including cells of the immune system, which are normally produced in the bone marrow.

Despite the genetic mismatch between donor and recipient, the injected cells were not rejected. This is consistent with previous evidence that ES cells are somehow less susceptible than adult cells to being identified as foreign by the immune system. The basis of this difference is not understood.

There was also no evidence that the immune cells derived from ES cells were attacking the recipient. The equivalent process after bone marrow transplantation is an often fatal complication known as graft-versus-host disease. The immune response to foreign antigens was, however, normal, indicating that recipients would be able to fight off infection efficiently.

Although the use of ES cell lines is controversial, it has many potential advantages over the use of cells from donor bone marrow or blood. The latter cells are highly variable, cannot be cultured in the lab and often cause graft-versus-host disease. Human ES cell lines can be cultured indefinitely, providing a renewable and well-defined source that is free from bacterial contamination.

Contact: Dr Richard Burt, Northwestern University, Chicago, 312-908-0059,

Lynette Henry | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>