Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers identify a new form of disease gene associated with Rett syndrome


Scientists at The Hospital for Sick Children (Sick Kids), the Centre for Addiction and Mental Health (CAMH) and the University of Toronto (U of T) have identified an alternate form of the disease gene and protein for the neurodevelopmental condition Rett syndrome. This discovery is being incorporated into a new molecular test that will aid not only in the diagnosis of Rett syndrome, but also for other developmental disabilities. This research is reported in the April issue of the scientific journal Nature Genetics (available online March 21, 2004).

"The previously identified gene MECP2 was only found in approximately 80 per cent of patients with Rett syndrome," said Dr. Berge Minassian, the study’s principal investigator, a Sick Kids neurologist and scientist, and an assistant professor in the Department of Paediatrics at U of T. "Our discovery suggests that a defective alternate form of the MECP2 gene causes Rett syndrome."

The protein produced by the new alternate gene is different than the protein that was first associated with Rett syndrome in 1999. In the current work, this novel molecule was found to be disrupted in some Rett syndrome patients while the original form of the protein remained intact. The new protein is also the predominant form in the brain, strongly indicating that it is the disease-relevant protein.

"Our group’s interest in Rett syndrome is relatively recent," said Dr. John Vincent, co-principal investigator of the study, head of the Molecular Neuropsychiatry & Development laboratory at CAMH, and assistant professor in the Department of Psychiatry at U of T. "Our fresh look at this problem was less affected by established dogma, and allowed us this new insight."

Rett syndrome is a genetic neurological disorder that occurs almost exclusively in girls, as the gene is found on the X chromosome. Babies with Rett syndrome appear to develop normally until 6 to 18 months of age. They then enter a period of regression, losing speech and other skills they had acquired. Most of the children develop seizures, repetitive hand movements, developmental delay, and motor-control problems, and they often have autistic tendencies. Rett syndrome is believed to affect 1 in 10,000 females.

"Since the Rett syndrome genetic tests are used not only to confirm a diagnosis of Rett syndrome, but also for ’negative inclusion’ in other developmental disabilities such as cerebral palsy, forms of mental retardation and autism, we expect this new discovery to have great clinical utility," added Dr. Minassian.

Kathy Hunter, president and founder of the International Rett Syndrome Association (IRSA), applauded the new paper: "This is truly an exciting time for Rett syndrome research and is a major leap forward in our understanding of how MECP2 works in the nervous system. This critical discovery may be put into immediate practice. This finding will gladden the hearts of the thousands of families that must meet the challenges of Rett syndrome everyday. It brings us all hope that we are closer to finding answers that can ease our struggles."

This research was enabled through the assistance of clinical collaborators Dr. Carolyn Schanen at Nemours Biomedical Research, Alfred I. duPont Hospital for Children in Delaware, Dr. Patrick MacLeod at the University of British Columbia, and Dr. Michael Friez at Greenwood Genetic Center in South Carolina. This research was supported by the Canadian Institutes of Health Research – Neuromuscular Research Partnership, The Hospital for Sick Children Foundation, and a U of T Dean’s Award to Dr. Vincent.

The Hospital for Sick Children, affiliated with the University of Toronto, is Canada’s most research-intensive hospital and the largest centre dedicated to improving children’s health in the country. Its mission is to provide the best in family-centred, compassionate care, to lead in scientific and clinical advancement, and to prepare the next generation of leaders in child health. For more information, please visit

The Centre for Addiction and Mental Health is the largest addiction and mental health organization in Canada. CAMH is a Pan American Health Organization and World Health Organization Collaborating Centre and a teaching hospital fully affiliated with the University of Toronto. For more information, visit

Founded in 1827, the University of Toronto is Canada’s leading teaching and research university with more than 60,000 students and 300,000 alumni worldwide. The university comprises 31 divisions, colleges and faculties on three campuses. This includes 14 professional faculties, numerous research centres and Canada’s largest university library system – the fifth largest research library in North America. For the tenth consecutive year, U of T has taken the top spot among medical/doctoral universities in the annual Maclean’s magazine university ranking.

For more information, please contact:

Laura Greer, Public Affairs
The Hospital for Sick Children
(416) 813-5046

Sylvia Hagopian, Media Relations Coordinator
The Centre for Addiction and Mental Health

Laura Greer | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>