Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes predict response of adult leukemia patients to chemotherapy

22.03.2004


Genes can indicate which adult leukemia patients will respond to therapy and what the duration of their remission will be, according to a new study published in the April 1, 2004, issue of Blood, the official journal of the American Society of Hematology.



Researchers from the Dana-Farber Cancer Institute in Boston, Mass., and the University "La Sapienza" in Rome studied 33 patients that had all been recently diagnosed with adult T-cell acute lymphocytic leukemia (T-ALL), a type of cancer in which the body makes too many T lymphocytes.

"The present study investigates, for the first time, the identification of gene expression profiles associated with both short-term and long-term outcome in adult patients with T-ALL. While approximately 70 percent of pediatric patients with T-ALL have excellent long-term response to intensive chemotherapy, adult patients have a much less favorable outcome. Previously, this poor prognosis of adult T-ALL patients had not been attributed to specific genetic signatures," according to Jerome Ritz, M.D., of the Dana-Farber Cancer Institute, co-senior author of the study. Robin Foa, M.D., from the University "La Sapienza," also served as senior author.


Using microarray technology, a technique that can evaluate the expression of thousands of genes at once, researchers were able to compare the gene expression profiles of the patients who responded to chemotherapy to those who did not. Through gene expression profiling – a determination of which genes in a cell or group of cells are active – the scientists identified a single gene, IL-8, that was highly expressed in T-ALL cells that were resistant to treatment. Researchers also discovered a set of 30 genes that were highly expressed in leukemic cells from patients who achieved complete remission.

A model based on the expression of three genes – AHNAK, TTK, and CD2 – was also found to be highly predictive of the duration of remission, correctly classifying 71 percent of outcomes. The model was later verified by T-ALL samples taken from a separate group of 18 patients. Two conventional measures for predicting a patient’s outcome – the white blood cell count and the degree of differentiation (a comparison of the similarity between cancerous cells and their normal counterparts) – were also examined and appeared to be less predictive than the three-gene expression model.

The results of the study may help doctors customize a T-ALL patient’s treatment plan based on the individual’s predicted response to therapy using these methods. Further exploration of these genes may also lead to new therapeutic targets for adult T-ALL.

According to Donald Miller, M.D., Ph.D., Professor in the Division of Hematology at the University of Louisville and Director of the James Graham Brown Cancer Center in Louisville, Ky., "This work represents one of the first applications of genomics to an important clinical problem. It provides strong evidence that genetic analysis will help us provide better care to patients with leukemia and other malignant diseases."



This work was supported by the National Institutes of Health grant CA66996, the Ted and Eileen Pasquarello Research Fund, the Associazione Italiana per la Ricerca sul Cancro, the Instituto Superiore di Sanita, the Ministero dell’Istruzione, dell’Universita e della Ricerca Scientifica (MIUR), the Progetto FIRB, and the Associazione per le Leucemie Acute dell’adulto "Cristina Bassi" e Fondazione Cassa di Risparmio di Genova e Imperia.

Aislinn Raedy | EurekAlert!
Further information:
http://www.hematology.org/
http://www.bloodjournal.org

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>