Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can a plant that acts like poison ivy cure prostate cancer?

18.03.2004


A shrub found in Southeast Asia can give you a rash like poison ivy; but it may also stop prostate cancer



The croton plant, long known to oriental herbalists and homeopaths as a purgative, has an oil in its seeds that shows promise for the treatment of prostate cancer – the second leading cause of cancer death in men in the United States. The active ingredient in the oil is 12-O-tetradecanoylphorbol-13-acetate, a compound generally known as TPA.

The finding was reported in the March 1, 2004, issue of Cancer Research by Xi Zheng, Allan Conney and other scientists at the Susan Lehman Cullman Laboratory for Cancer Research at Rutgers, The State University of New Jersey, and the Cancer Institute of New Jersey (CINJ).


"We demonstrated that TPA could simultaneously stop the growth of new prostate cancer cells, kill existing cancer cells and ultimately shrink prostate tumors," said Conney, the William M. and Myrle W. Garbe Professor of Cancer and Leukemia Research at Rutgers’ Ernest Mario School of Pharmacy, and a member of CINJ.

In addition to studies on the effect of TPA alone, the researchers also tested TPA in combination with all-trans retinoic acid (ATRA), a vitamin A derivative previously shown to be effective in treating leukemia.

"We knew that ATRA is an effective synergist with TPA in treating leukemia cells in the laboratory, but prostate cancer is a different situation, probably involving different molecular mechanisms," Conney said.

The studies by Zheng and Conney are the first to show an impressive synergy between TPA and ATRA in inhibiting the growth of cultured prostate cancer cells and the first to assess their combined effects, and the effects of TPA alone, on human tumors grown in mice.

Scientists, intrigued by the skin-irritating property of croton seed oil, demonstrated more than 50 years ago that croton oil and its constituent TPA promoted tumors in laboratory animals following the introduction of a strong carcinogen at a low dose. Subsequent laboratory tests, however, produced dramatically different outcomes.

"It turned out that extremely low concentrations of TPA had an extraordinarily potent effect on myeloid leukemia cells, causing them to revert to normal cell behavior," Conney explained.

However, it was a long time before anyone acknowledged that TPA could actually do good things for people, Conney observed.

Investigators at China’s Henan Tumor Research Institute and Rutgers, interested in the potential beneficial effects of TPA, began a collaborative study in 1995. When TPA was administered to terminally ill myeloid leukemia patients in China, the number of leukemia cells in the blood and bone marrow decreased and there were remissions of the disease.

"We are clearly encouraged by our laboratory results with TPA and ATRA on prostate cancer cells," Conney said. "Our studies are an important early step in a long process, and we are planning additional testing in humans. Further research with these compounds and others could provide hope for the half million new cases of prostate cancer each year."

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu/

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>