Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can a plant that acts like poison ivy cure prostate cancer?

18.03.2004


A shrub found in Southeast Asia can give you a rash like poison ivy; but it may also stop prostate cancer



The croton plant, long known to oriental herbalists and homeopaths as a purgative, has an oil in its seeds that shows promise for the treatment of prostate cancer – the second leading cause of cancer death in men in the United States. The active ingredient in the oil is 12-O-tetradecanoylphorbol-13-acetate, a compound generally known as TPA.

The finding was reported in the March 1, 2004, issue of Cancer Research by Xi Zheng, Allan Conney and other scientists at the Susan Lehman Cullman Laboratory for Cancer Research at Rutgers, The State University of New Jersey, and the Cancer Institute of New Jersey (CINJ).


"We demonstrated that TPA could simultaneously stop the growth of new prostate cancer cells, kill existing cancer cells and ultimately shrink prostate tumors," said Conney, the William M. and Myrle W. Garbe Professor of Cancer and Leukemia Research at Rutgers’ Ernest Mario School of Pharmacy, and a member of CINJ.

In addition to studies on the effect of TPA alone, the researchers also tested TPA in combination with all-trans retinoic acid (ATRA), a vitamin A derivative previously shown to be effective in treating leukemia.

"We knew that ATRA is an effective synergist with TPA in treating leukemia cells in the laboratory, but prostate cancer is a different situation, probably involving different molecular mechanisms," Conney said.

The studies by Zheng and Conney are the first to show an impressive synergy between TPA and ATRA in inhibiting the growth of cultured prostate cancer cells and the first to assess their combined effects, and the effects of TPA alone, on human tumors grown in mice.

Scientists, intrigued by the skin-irritating property of croton seed oil, demonstrated more than 50 years ago that croton oil and its constituent TPA promoted tumors in laboratory animals following the introduction of a strong carcinogen at a low dose. Subsequent laboratory tests, however, produced dramatically different outcomes.

"It turned out that extremely low concentrations of TPA had an extraordinarily potent effect on myeloid leukemia cells, causing them to revert to normal cell behavior," Conney explained.

However, it was a long time before anyone acknowledged that TPA could actually do good things for people, Conney observed.

Investigators at China’s Henan Tumor Research Institute and Rutgers, interested in the potential beneficial effects of TPA, began a collaborative study in 1995. When TPA was administered to terminally ill myeloid leukemia patients in China, the number of leukemia cells in the blood and bone marrow decreased and there were remissions of the disease.

"We are clearly encouraged by our laboratory results with TPA and ATRA on prostate cancer cells," Conney said. "Our studies are an important early step in a long process, and we are planning additional testing in humans. Further research with these compounds and others could provide hope for the half million new cases of prostate cancer each year."

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu/

More articles from Health and Medicine:

nachricht Research offers clues for improved influenza vaccine design
09.04.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Injecting gene cocktail into mouse pancreas leads to humanlike tumors
06.04.2018 | University of Texas Health Science Center at San Antonio

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>