Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson-Led Study Shows Needle-Free Transdermal System as Effective as IV Pain Pump for Post-Surgical Pain While Giving Patien

17.03.2004


A needle-free, self-contained fentanyl patient-controlled transdermal system (PCTS) is as effective for post-surgical pain management as the traditional intravenous pump (IV), while giving patients more mobility and freeing nurses to devote more time to patient care. The study led by researchers from Jefferson Medical College of Thomas Jefferson University, Philadelphia, appears in the March 17 issue of the Journal of the American Medical Association (JAMA).

The multi-center study conducted at more than 30 sites nationwide demonstrated that a button-activated, fentanyl system that delivers pain medication through the skin could eliminate the need for IVs for post-surgical pain relief. The study was led by Eugene Viscusi, M.D., director of the Acute Pain Management Service at Thomas Jefferson University Hospital, Philadelphia. The fentanyl transdermal system would also offer the advantage of a needle-free, pre-programmed medication system in a small, self-contained unit.

“This is a miracle of miniaturization,” said Dr. Viscusi, assistant professor of Anesthesiology, Jefferson Medical College of Thomas Jefferson University.



The system, known as E-TRANS fentanyl PCTS, is approximately the size of a credit card, self adherent to the skin, pre-programmed and needle free. It delivers pain medication across the skin with a low level electric current when activated by the patient with a small button on the surface of the device.

The fentanyl transdermal system could be used for patients with moderate to severe post-operative pain after most surgeries including joint replacement, prostate surgery or gynecological procedures, the Jefferson anesthesiologist said.

“Anyone who has ever had surgery remembers the discomfort of having IVs and needles,” Dr. Viscusi said. “This patch system has a huge potential advantage.”

The PCTS, placed on an inpatient’s upper arm or chest by adhesive on the back of the patch, transmits the pain medication through the skin at the push of a button, explained Dr. Viscusi. When the patient pushes the button for pain, PCTS delivers medication over 10 minutes. The system has a “lock out” feature so a patient cannot administer more pain medication than is prescribed for him. The system is replaced every 24 hours as needed.

Without any tubing or equipment to encumber a patient’s movement, the patient can freely move about to perform needed physical therapy, Dr. Viscusi said.

The PCTS could also be a boon to nurses as nursing staff would not have to spend time setting up an IV and the time consuming standard pain pump currently used. This could allow nurses to devote more time to patient care instead of technology, he said.

The fentanyl patch system studied is currently under review by the U.S. Food and Drug Administration (FDA) and was developed by Ortho-McNeil Pharmaceuticals, Inc. and the ALZA Corporation, both subsidiaries of Johnson and Johnson.

Jeffrey Baxt | TJUH
Further information:
http://www.jeffersonhospital.org/news/e3front.dll?durki=17592

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>