Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria live in the esophagus!

16.03.2004


The esophagus isn’t merely a tube for food traveling from the mouth to the stomach, it also provides an environment for bacteria to live, according to a new study by NYU School of Medicine scientists that overturns the general belief that the esophagus is free of bacteria.



"People thought that the esophagus wasn’t hospitable to bacteria," says Martin J. Blaser, M.D., Frederick King Professor and Chairman of the Department of Medicine, and Professor of Microbiology, an author of the study. Bacteria were believed to move through the esophagus, the tube connecting the mouth to the stomach, as food-borne passengers on route to the stomach.

But the new study in the March 23 print issue of the Proceedings of the National Academy of Sciences demonstrates that bacteria do indeed live in the esophagus, and these microbes are a diverse bunch. "This study provides evidence for the first time that there are indigenous microbes in the human esophagus," says Zhiheng Pei, M.D., Ph.D., Assistant Professor of Pathology and Medicine, the study’s lead author.


The findings may have profound implications for treating diseases of the esophagus, including gastroesophageal reflux disease (GERD), which afflicts some 10 million people in the United States. Chronic inflammation associated with GERD can lead to the development of a precancerous condition called Barrett’s esophagus. If disease-causing bacteria are ever found in the esophagus, it may one day be possible to treat these diseases with antibiotics.

While bacteria in the esophagus will be news to most people, the NYU researchers had suspected that the food tube harbored microorganisms. After all, bacteria have now been found in deep-sea vents, hot springs, volcanoes, and other extremely harsh environments. "By comparison, the esophagus seemed much more hospitable," says Dr. Blaser.

In human biology, too, there have been surprises concerning bacteria. For many years, doctors didn’t believe that bacteria could survive in the acid environment of the stomach. But in the early 1980s, researchers discovered that the bacterium Helicobacter pylori lived in the stomach and is associated with ulcers. Antibiotics are now routinely used to treat ulcers. In subsequent years, Dr. Blaser and other scientists established the bacterium’s link to certain kinds of stomach cancers.

The connection between H. pylori and gastric cancer was one of the reasons why the NYU researchers were drawn to the esophagus. Might certain kinds of disease-causing bacteria also reside in the esophagus? While bacteria have long been known to inhabit the mouth, the evidence that bacteria even lived in the esophagus was inconclusive. Previous studies of the esophagus didn’t consistently find bacteria in the esophagus that could be cultured. Textbooks have never described microbes in the esophagus.

Rather than relying on the conventional methods of culturing bacteria in petri dishes in the laboratory, the researchers decided to mine DNA libraries that have been compiled of bacterial genes. They used a technique called PCR (polymerase chain reaction) to greatly amplify snippets of DNA extracted from biopsies of tissue from the esophagus, and they compared the sequences of the DNA in the biopsies to known bacterial DNA.

The biopsies were taken from four patients who each had a healthy esophagus. Specifically, the biopsies were taken from the distal esophagus, the part closest to the stomach. This area is especially vulnerable to injury due to the backwash of gastric contents that occurs as a consequence of GERD.

The researchers found 95 species of bacteria, and they estimated that they were able to sample 56 to 79 percent of the species in the biopsies. Therefore, even more species may be present. Many of these bacteria resemble garden-variety microorganisms that aren’t known to cause disease.

More than 60 percent of the esophageal bacteria were shared among all four individuals, indicating that populations of certain bacterial species appear to be common to all people, according to the study. Although many of the bacteria in the esophagus were highly related to the bacteria found in the mouth, certain bacteria were not known residents of the mouth, says Dr. Pei. This finding suggests that some, if not all, "esophageal bacteria may be unique," he notes.

Importantly, Dr. Pei also directly viewed bacteria colonizing the surface of the esophagus, proving that the bacteria weren’t simply traveling through the tube but had taken up residence in the tissue lining it.

Esophageal adenocarcinoma, a kind of cancer, has been increasing rapidly in white men, according to the National Cancer Institute, which sponsored the NYU study. "Animal studies suggest that inflammation and normal bacteria work in concert to cause colon cancer," says Dr. Pei. "Esophageal cancer arises in an area of the esophagus where chronic inflammation is occurring," notes Dr. Pei.

In the next phase of their work, the researchers plan to identify the bacteria in the esophagus in people who have GERD and other esophageal conditions. They suspect that they may find different bacteria in the samples of unhealthy esophageal tissue, which could suggest that microorganisms are playing a role.

"We are operating in the framework of the ’microbiome’, a term coined by Nobel Laureate Joshua Lederberg," says Dr. Blaser. "It means that microbes are part of us, part of our identity. They aren’t just passengers," he says, " but are, in essence, metabolic and physiologic compartments of the human body."

Pamela McDonnell | EurekAlert!
Further information:
http://www.med.nyu.edu/

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>