Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Johns Hopkins gene hunters pinpoint new cancer gene target

12.03.2004


Scientists at the Johns Hopkins Kimmel Cancer Center and Howard Hughes Medical Institute have found mutations in a gene linked to the progression of colon and other cancers. The research findings, published online in the March 11 issue of Science, may lead to new therapies and diagnostic tests that target this gene.



The gene in which the mutations have been found, called PIK3CA, is part of a family of genes encoding lipid kinases, enzymes that modify fatty molecules and direct cells to grow, change shape and move. Although scientists have been studying the biochemical properties of this family of genes for more than a decade, until now, no study revealed that they were mutated in cancer.

Kinases have been the focus of recent drug development strategies, with some kinase-inhibiting compounds, such as Gleevec and Herceptin, already being used clinically to inhibit tumor growth.


"These findings open the door to developing specific therapies that may prove useful for the treatment of cancers with mutations in PIK3CA," says Victor Velculescu, M.D., Ph.D., assistant professor of oncology and senior author of the research.

In their current experiments, the scientists sequenced the molecular code of the genes in this lipid kinase family and found mistakes in the nucleotides, or DNA building blocks, in one particular gene, called PIK3CA. Each mistake is a result of one nucleotide being switched for another. PIK3CA mutations were found in 32 percent of colon cancer samples (74/234), as well as 27 percent (4/15) of glioblastomas, 25 percent (3/12) of gastric cancers, 8 percent (1/12) breast cancers and 4 percent (1/24) of lung cancers. By studying 76 additional premalignant colon tumors, the scientists found that PIK3CA mutations may occur at or near the time a tumor is about to invade other tissues.

The investigators demonstrated that the mutations increase PIK3CA kinase activity, which can start a cascade of cellular events that spark a normal cell to grow uncontrollably and become cancerous.

"We envision future cancer therapy as personalized, based on gene mutations in each patient’s tumor," says Velculescu. "This kind of information, gleaned from sequencing a patient’s tumor, means drugs could be targeted to just the right molecular pathway at just the right time and potentially be more effective with fewer side effects."

Most of the PIK3CA mutations described in the current paper are located in two DNA cancer "hot spots," thus making molecular diagnostic tests possibly easier to develop. "These mutations, added to a panel of existing markers for colon cancer developed in our laboratory, could help find cancers that would otherwise go undetected," says Yardena Samuels, Ph.D., postdoctoral fellow and first author of the study.

The researchers are now looking more closely at the role of PIK3CA in tumor development and are working on identifying compounds that could target tumors with mutations in this gene.

This research was funded by the Ludwig Trust, the Benjamin Baker Scholarship Fund, the EMBO Fellowship Fund and grants from the National Institutes of Health.

Other participants of this research include Zhenghe Wang, Alberto Bardelli, Natalie Silliman, Janine Ptak, Steve Szabo, Gregory J. Riggins, Kenneth W. Kinzler and Bert Vogelstein of the Johns Hopkins Kimmel Cancer Center and Howard Hughes Medical Institute; Hai Yan of Duke University Medical Center; Adi Gazdar of UT Southwestern Medical Center; Steven M. Powell of the University of Virginia Health System; and James K.V. Willson and Sanford Markowitz of the Howard Hughes Medical Institute and Ireland Cancer Center, University Hospitals of Cleveland and Case Western University.

Vanessa Wasta | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/

More articles from Health and Medicine:

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>