Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Johns Hopkins gene hunters pinpoint new cancer gene target

12.03.2004


Scientists at the Johns Hopkins Kimmel Cancer Center and Howard Hughes Medical Institute have found mutations in a gene linked to the progression of colon and other cancers. The research findings, published online in the March 11 issue of Science, may lead to new therapies and diagnostic tests that target this gene.



The gene in which the mutations have been found, called PIK3CA, is part of a family of genes encoding lipid kinases, enzymes that modify fatty molecules and direct cells to grow, change shape and move. Although scientists have been studying the biochemical properties of this family of genes for more than a decade, until now, no study revealed that they were mutated in cancer.

Kinases have been the focus of recent drug development strategies, with some kinase-inhibiting compounds, such as Gleevec and Herceptin, already being used clinically to inhibit tumor growth.


"These findings open the door to developing specific therapies that may prove useful for the treatment of cancers with mutations in PIK3CA," says Victor Velculescu, M.D., Ph.D., assistant professor of oncology and senior author of the research.

In their current experiments, the scientists sequenced the molecular code of the genes in this lipid kinase family and found mistakes in the nucleotides, or DNA building blocks, in one particular gene, called PIK3CA. Each mistake is a result of one nucleotide being switched for another. PIK3CA mutations were found in 32 percent of colon cancer samples (74/234), as well as 27 percent (4/15) of glioblastomas, 25 percent (3/12) of gastric cancers, 8 percent (1/12) breast cancers and 4 percent (1/24) of lung cancers. By studying 76 additional premalignant colon tumors, the scientists found that PIK3CA mutations may occur at or near the time a tumor is about to invade other tissues.

The investigators demonstrated that the mutations increase PIK3CA kinase activity, which can start a cascade of cellular events that spark a normal cell to grow uncontrollably and become cancerous.

"We envision future cancer therapy as personalized, based on gene mutations in each patient’s tumor," says Velculescu. "This kind of information, gleaned from sequencing a patient’s tumor, means drugs could be targeted to just the right molecular pathway at just the right time and potentially be more effective with fewer side effects."

Most of the PIK3CA mutations described in the current paper are located in two DNA cancer "hot spots," thus making molecular diagnostic tests possibly easier to develop. "These mutations, added to a panel of existing markers for colon cancer developed in our laboratory, could help find cancers that would otherwise go undetected," says Yardena Samuels, Ph.D., postdoctoral fellow and first author of the study.

The researchers are now looking more closely at the role of PIK3CA in tumor development and are working on identifying compounds that could target tumors with mutations in this gene.

This research was funded by the Ludwig Trust, the Benjamin Baker Scholarship Fund, the EMBO Fellowship Fund and grants from the National Institutes of Health.

Other participants of this research include Zhenghe Wang, Alberto Bardelli, Natalie Silliman, Janine Ptak, Steve Szabo, Gregory J. Riggins, Kenneth W. Kinzler and Bert Vogelstein of the Johns Hopkins Kimmel Cancer Center and Howard Hughes Medical Institute; Hai Yan of Duke University Medical Center; Adi Gazdar of UT Southwestern Medical Center; Steven M. Powell of the University of Virginia Health System; and James K.V. Willson and Sanford Markowitz of the Howard Hughes Medical Institute and Ireland Cancer Center, University Hospitals of Cleveland and Case Western University.

Vanessa Wasta | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>