Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Progenitor Cells Predict Heart Disease Severity

10.03.2004


Duke University Medical Center researchers have uncovered a strong relationship between the severity of heart disease and the level of endothelial progenitor cells circulating in the bloodstream. This relationship, if confirmed by ongoing studies, could represent an important new diagnostic and therapeutic target for the treatment of coronary artery disease, they said.


Geoffrey Kunz, M.D.



These endothelial progenitor cells (EPC) are produced in the bone marrow, and one of their roles is to repair damage to the lining of blood vessels. Duke cardiologists believe that one cause of coronary artery disease is an increasing inability over time of these EPCs to keep up with the damage caused to the arterial lining, or endothelium.

"In our study we found that patients with multi-vessel disease had many fewer EPCs, which supports our hypothesis that these cells play an important role in protecting blood vessels," said cardiologist Geoffrey Kunz, M.D., of the Duke Clinical Research Institute. "If you don’t have enough of the cells, the ongoing damage to the endothelium from traditional risk factors occurs faster than the body’s ability for repair."


Kunz presented the results of the Duke analysis March 9, 2004, at the annual scientific sessions of the American College of Cardiology.

In an article published last year in Circulation (July 29, 2003), Duke researchers reported discovering in mouse studies that a major outcome of aging is an unexpected failure of the bone marrow to produce EPCs needed to repair and rejuvenate arteries exposed to a genetically induced risk of high lipid levels. The researchers demonstrated that an age-related loss of these particular cells is critical to determining the onset and progression of atherosclerosis, which causes arteries to clog and become less elastic.

For the current study, the researchers measured the levels of EPCs in 122 patients undergoing diagnostic cardiac catheterization procedures at Duke and correlated those findings with the severity of coronary artery disease. Specifically, they determined how many of the coronary arteries showed signs of atherosclerosis.

The average age of the patient sample was 58, with 37 percent of them having multi-vessel disease, 29 percent having diabetes and 20 percent having had a recent heart attack.

The researchers removed EPCs from the blood samples and grew them in cell culture to determine how many of the cells would grow. The number of cells is measured as colony-forming units (CFU).

"We found that the patients with multi-vessel disease had significantly lower EPC counts than those without -- 13 CFU vs. 41.7 CFU," Kunz said. "Additionally, for every 10 CFU increase in EPC level, a patient’s likelihood for multi-vessel disease declined by 20 percent."

While the EPC levels did not vary significantly by age, gender or other risk factors, the researchers found that the levels were lower for diabetics (19 CFU vs. 36 CFU) and for patients who had suffered a recent heart attack (23 CFU vs. 34 CFU).

"These findings demonstrate a strong inverse relationship between circulating EPCs and coronary artery disease, independent of traditional disease risk factors," Kunz said.

The researchers said that it might ultimately be possible to forestall or even prevent development of atherosclerosis by injecting these cells into patients or by retraining the patient’s own stem cells to differentiate into progenitor cells capable of arterial repair.

While the direct clinical use of stem cells as a treatment might be many years off, the researchers said it is likely that strategies currently used to reduce the risks for heart disease -- such as lifestyle modifications and/or different medications -- preserve these rejuvenating cells for a longer period of time, which delays the onset of atherosclerosis.

"On the diagnostic front, it may be possible to take blood samples from a young person, and depending on measurements of the EPC levels, begin taking actions early that prevent the depletion of EPCs," Kunz said. "These cells might also be able to forestall the development of congestive heart failure in patients who have suffered a heart attack. In these ways, EPCs can play an important role in both primary and secondary prevention."

Other members of the Duke team were Grace Liang, Florim Cuculoski, David Gregg, M.D., Korkut Vata, Pascal Goldschmidt, M.D., Chumming Dong, M.D., Doris Taylor, Ph.D., and Eric Peterson, M.D.

Richard Merritt | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7451

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>