Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify clues about marijuana effects

09.03.2004


Scientists have been studying cannabinoids, substances that are chemically related to the ingredients found in marijuana, for more than two decades, hoping to learn more about how the drug produces its effects--both therapeutic and harmful. Marijuana has been reported effective in the treatment of multiple sclerosis, glaucoma, nausea caused by chemotherapy and wasting caused by AIDS. However, like all drugs, it also causes numerous unwanted side effects, including hypothermia, sedation, memory impairment, motor impairment and anxiety. Research on cannabinoids could someday yield new, more effective drugs or drug combinations.



At Temple University’s School of Pharmacy and Center for Substance Abuse Research (CSAR), one of only a few centers in the nation focused on the basic science of substance abuse, several researchers are investigating how cannabinoids produce pharmacological effects in rats.

One such study, "L-NAME, a nitric oxide synthase inhibitor, and WIN 55212-2, a cannabinoid agonist, interact to evoke synergistic hypothermia," published in the February issue of the Journal of Pharmacology and Experimental Therapeutics, reveals how cannabinoids produce one of the drug’s most robust actions, hypothermia, or decreased body temperature.


According to lead author Scott Rawls, Ph.D., assistant professor of pharmacodynamics at Temple’s School of Pharmacy, "To operate at maximum efficiency, the body needs to maintain a stable, normal temperature. When the body’s temperature is altered, as in hypothermia, normal body functions, such as blood pressure and circulation, are impaired."

Marijuana operates via two receptors in the body. One receptor, called CB1, is located in the brain and produces the drug’s psychoactive effects, including euphoria and dizziness. The other receptor, CB2, is found throughout the body and impacts the immune system. Substances in marijuana bind to one of these receptors and set off a chemical process that leads to an effect, such as hypothermia. Scientists have focused on this chemical process at the molecular level to pinpoint the exact molecules involved.

Knowing that the molecule nitric oxide (NO) plays an important role in the regulation of body temperature, the Temple researchers set out to determine what role it might play in cannabinoid-induced hypothermia. By combining a cannabinoid with a substance that blocked NO synthesis, they found that cannabinoid-induced hypothermia increased more than two-fold.

"This demonstrates the possibility that NO plays a part in regulating the impact of cannabinoids on body temperature and other cannabinoid-mediated actions," said Rawls. "These findings could be helpful in determining the mechanisms that underlie some of the pharmacological actions of marijuana," he added.

Rawls’ research team is currently investigating the impact of cannabinoids on other physiological systems, such as analgesia and movement, and the brain neurotransmitters that mediate those systems.

Eryn Jelesiewicz | Temple University
Further information:
http://www.temple.edu/news_media/ej0403_536.html

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>