Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New test detects cirrhosis of the liver in an early stage

08.03.2004


Ghent researchers have developed a new and easy method of detecting cirrhosis of the liver. This major finding helps predict the evolution of chronic liver disease, allowing physicians to start proper treatment early on. Patients suffering from this serious, progressive disease in its cirrhosis stage have a high chance of developing liver cancer. The test developed in Ghent permits frequent, non-invasive analyses to be carried out, through which the critical stages of the disease can be closely monitored.



Chronic liver disease: life-threatening and progressive

Millions of people worldwide suffer from chronic liver disease. The major causes are infection by one of the hepatitis viruses and excessive use of alcohol. The liver is a very complex organ, where more than 500 metabolic functions take place, including clearing toxic substances from our body and producing proteins that coagulate the blood following wounds. Liver problems have a high rate of incidence and - after cancer and cardiovascular disorders - they are the third cause of death among people between 40 and 65.


The most problematic aspect of chronic liver disease is liver fibrosis, in which connective tissue grows throughout the liver, disrupting the composition of this complex organ and, in time, its functioning as well. Depending on its cause and on the patient, liver fibrosis can evolve rapidly or slowly. There are several distinct stages. One of the final stages is cirrhosis of the liver. When a patient develops cirrhosis, the chance of liver cancer rises sharply (25 to 40 times higher than normal) and in a very advanced stage the liver is no longer able to function. The only possibility at that point is a liver transplant - an extremely complicated intervention.

Current treatment is problematic

In order to decide which treatment is appropriate for a particular patient with liver fibrosis, doctors need to know which stage the liver disease is in. As soon as cirrhosis has set in, they will want to start tracking the possible development of liver cancer, which can occur at any moment. Of course, early detection and appropriate treatment is vital. But this is precisely the problem. Today, the only way to detect cirrhosis is through a biopsy - where a tissue sample is taken by injecting a needle through the skin into the liver. Biopsy is not entirely risk-free and is very expensive (about 1500 euro per patient).

Ghent discovery enables quick, inexpensive test

VIB researcher Nico Callewaert and his colleagues in the team of Roland Contreras (Dept. for Molecular Biomedical Research, Ghent University) have developed a new method that only requires a little blood in order to detect the cirrhosis stage reliably. In a test group of patients, the researchers succeeded in detecting 70 – 80% of the early liver cirrhoses. Not a single patient was diagnosed incorrectly. The new test detects changes in the quantities of the various sugars that are produced by the liver, which occur in the transition from fibrosis to cirrhosis. The researchers have been able to measure the sugar changes quite accurately with advanced instrumentation that is already being used in clinical laboratories, but for genetic tests.

A hopeful future

The test is now being perfected. Through future collaborations with industry, the researchers hope to arrive at a test that is easy to use and that shows 100% specificity for cirrhosis of the liver. The test could then be used to follow people with chronic hepatitis C viral infection. Often, 10 years can pass between the first diagnosis and the development of cirrhosis of the liver. An annual test could quickly detect a change and be able to predict an early stage of cirrhosis. Nico Callewaert comments: ‘We hope to be able to alert patients when the chance of liver cancer increases sharply. At that moment, the doctor can test frequently for the presence of cancer cells and detect the cancer early enough so that the patient can quite possibly be helped.’

Ann Van Gysel | alfa
Further information:
http://www.vib.be

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>