Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Study Reviews Novel Approach To Control Inflammation Using Melanocortin Receptors


Study Supports Development Potential in Several Therapeutic Areas

Zengen, Inc. announced today that its researchers have discovered that activation of melanocortin receptors (MCR) subtypes MC1R and MC3R could be a novel strategy to control inflammatory disorders.

The findings, "Targeting Melanocortin Receptors as a Novel Strategy to Control Inflammation," appear in the March 2004 issue of Pharmacological Reviews, a publication of the American Society for Pharmacology and Experimental Therapeutics (ASPET).

"MCR activation causes a collective reduction of the major molecules involved in the inflammatory process," said Anna Catania, M.D., professor of endocrinology, School of Internal Medicine, University of Milan and lead author of the study. "This discovery is significant because it shows that treatment with melanocortin peptides doesn’t abolish the inflammatory response but instead modulates it. An advantage of melanocortins in the treatment of inflammation is that their influences are broad and are not restricted to a specific mediator or chemical pathway."

Recognition and cloning of five melanocortin receptors has greatly improved understanding of peptide-target cell interactions. Preclinical investigations indicate that activation of certain MCR subtypes, primarily MC1R and MC3R, could be useful in treatment of localized and systemic inflammatory disorders. These include: organ transplantation, chronic inflammatory diseases, acute inflammation, inflammation within the brain and neurogenerative disorders, peripheral neuropathies, systemic host reactions, ischemia and reperfusion injury and infections.

"The study results also indicate that certain melanocortin peptides have antimicrobial effects," said James Lipton, Ph.D., chief scientific officer and director of Zengen and study author. "Unlike corticosteroids, melanocortins do not reduce microbial killing activity, but enhance it. We are encouraged by these findings and will continue our research and development efforts in peptide technology."

Zengen’s researchers also conducted a separate study on melanocortin receptors that was published in the February 2004 issue of the Journal of Leukocyte Biology. The study, titled, "Autocrine inhibitory influences of alpha-melanocyte-stimulating hormone in malignant pleural mesothelioma," showed that activation of express melanocortin 1 receptor (MC1R) by selective peptides or peptidomimetics might provide a novel strategy to reduce mesothelioma cell proliferation by taking advantage of an endogenous inhibitory circuit based on alpha-Melanocyte-Stimulating Hormone ((-MSH), and its receptor MC1R.

About Zengen, Inc.

Founded in 1999, Zengen, Inc. is a biopharmaceutical company focused on discovering, developing and commercializing innovative products to treat and prevent infection and inflammation through application of its proprietary peptide technologies. Zengen is currently conducting Phase I/II clinical trials for CZEN 002, one of the Company’s proprietary peptide molecules, for the treatment of vulvovaginal candidiasis, commonly known as vaginal yeast infection. For more information about Zengen, please visit

Kumiko Hakushi | Ruder Finn, Inc.

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>