Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Widely used anti-nausea drug may interfere with cancer chemotherapy

03.03.2004


A drug widely used to prevent nausea and other side effects in patients receiving chemotherapy for breast cancer may also, unfortunately, prevent the therapy from working efficiently on tumor cells, researchers from the University of Chicago report in the March 1 issue of the Journal, Cancer Research.



Dexamethasone, a synthetic steroid, is routinely given to women just before they receive chemotherapy with either paclitaxel or doxorubicin, two drugs commonly used to treat breast cancer. In this laboratory study, the researchers show that pretreatment with dexamethasone reduces the ability of paclitaxel and doxorubicin to kill cancer cells.

"Nearly every patient receiving chemotherapy for breast cancer also receives dexamethasone pre-treatments that may make therapy less effective," said Suzanne Conzen, M.D, assistant professor of medicine at the University of Chicago and director of the study. "With breast cancer one wants the best tumor reduction possible, but we have evidence that the benefits provided by routine treatment with dexamethasone may cause decreased chemotherapy-induced tumor cell death."


Conzen’s team became suspicious nearly four years ago when they discovered that a group of steroid hormones know as glucocorticoids could inhibit death in certain cell types, including breast epithelial cells. This made them begin to question the wisdom of treating breast cancer patients with dexamethasone (known as Dex), an artificial glucocorticoid.

A careful search of the literature on dexamethasone uncovered another surprise. "Remarkably," the authors note, no clinical studies had ever addressed the potential effects on tumor response of administering Dex before routine chemotherapy for breast cancer.

To study these effects at the molecular level, Conzen’s team devised a laboratory system that mimicked the usual clinical administration of dexamethasone in this setting. They found that pretreatment of breast cancer cells with dexamethasone reduced the cell death rate following exposure to either paclitaxel or doxorubicin by more than 25 percent, even though the two drugs rely on very different mechanisms to cause tumor cell destruction.

Since dexamethasone actually kills certain types of cells such as lymphocytes and is effective treatment for lymphoma, the researchers wondered why Dex destroys one type of cancer cell yet protects another from cell death. Using a technique that measures the effects of a drug on gene expression, they found that dexamethasone consistently upregulated 45 genes in breast cancer cells and that these genes differed from those found to be regulated by dexamethasone in earlier studies using lymphocytes.

They then focused their attention on two genes that were upregulated in breast cells by dexamethasone -- SGK-1 and MKP-1. SGK-1 has been previously shown to prevent cell death in brain and breast cells. MKP-1 can protect prostate cancer cells and its increased expression is associated with breast, ovarian and pancreatic cancers.

They found that both SGK-1 and MKP-1 played a major role in dexamethasone’s effects, protecting breast cancer cells from the effects of both paclitaxel and doxorubicin. Blocking these proteins, on the other hand, reversed the drug’s unwanted effects on cancer cell survival.

Although the authors are not yet ready to stop using dexamethasone, a very effective drug for prevention of side effects from chemotherapy, Conzen suggests that the evidence is mounting that oncologists "should begin to study the effects of using this drug routinely as part of breast cancer therapy."

"The widespread use of drugs such as dexamethasone before chemotherapy," the authors conclude, "requires reevaluation because of the observed inhibition of chemotherapy efficacy."

Additional authors of the study were Wei Wu, Shamita Chaudhuri, Deanna Brickley, Diana Pang and Theodore Karrison of the University of Chicago. The National Institutes of Health, the Department of Defense, the Schweppe, Concern, Entertainment Industry and the University of Chicago Cancer Research Foundations supported the research.

John Easton | EurekAlert!
Further information:
http://www.medcenter.uchicago.edu/

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>