Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New imaging technique developed to identify breast cancer

02.03.2004


Researchers at Johns Hopkins have for the first time used a chemical marker detected by proton magnetic resonance spectroscopic imaging (MRSI) to successfully diagnose breast cancer. The diagnostic technique produces pictures of choline within breast tumors.



In the study, researchers from the Russell H. Morgan Department of Radiology and Radiological Science at Hopkins demonstrated that choline signals analyzed by MRI were significantly elevated in malignant tumors in 15 of 18 patients studied. Three of the cases could not be included because of technical failures such as patient movement or computer failure during the scanning procedure.

The results are published in the December-January issue of the Journal of Magnetic Resonance Imaging.


Scientists have long known that cancers contain elevated levels of choline, a product of membrane synthesis, but the Hopkins study is believed to be the first to demonstrate its value in accurately identifying breast tumors.

MRSI of the breast does not appear likely to be cost-effective as a routine screening tool for breast cancer, but may prove to be a viable, noninvasive alternative to biopsy in cases with positive mammography or clinical breast exam results, says Michael A. Jacobs, Ph.D., the lead researcher for the Hopkins study. "What MRSI does provide is information about the molecular environment of breast tumors, which also may be useful in designing therapeutic interventions for patients."

Proton magnetic resonance imaging uses the water content in tissue to produce images by measuring signals emitted after subjecting the tissue to high magnetic fields, but provides no information on the chemical or molecular aspects of the tissue being imaged. Combining proton MRI with spectroscopy allows the scientists to differentiate intracellular components of the cell and signals emitted by certain biochemicals, such as choline.

In the study, 15 patients who had been referred for MRI evaluation after previous examination had revealed breast tumors underwent regular breast MRI to identify the lesion. These studies were followed by MRSI scanning to determine if choline signals in the tumors could be adequately imaged using spectroscopy. Biopsies performed after the imaging revealed that eight of the tumors were malignant carcinomas and seven were benign. MRSI showed elevated choline levels in all eight of the malignant tumors.

"These data are proof of principle, and strongly suggest that MRSI can serve as an important adjunct to the routine MRI scan that may aid physicians in making a diagnosis of breast cancer," says Jacobs. "We can envision a time when this procedure may even replace the need for biopsy in some cases and provide the basis to follow treatment strategies in certain cases of breast cancer. However, more research is needed to fully understand the potential impact of these findings."


Johns Hopkins Medical Institutions’ news releases are available on an EMBARGOED basis on EurekAlert at http://www.eurekalert.org and from the Office of Communications and Public Affairs’ direct e-mail news release service. To enroll, call 410-955-4288 or send e-mail to bsimpkins@jhmi.edu.

Gary Stephenson | JHMI
Further information:
http://www.hopkinsmedicine.org/Press_releases/2004/03_01_04.html
http://www.hopkinsmedicine.org

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>