Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New imaging technique developed to identify breast cancer

02.03.2004


Researchers at Johns Hopkins have for the first time used a chemical marker detected by proton magnetic resonance spectroscopic imaging (MRSI) to successfully diagnose breast cancer. The diagnostic technique produces pictures of choline within breast tumors.



In the study, researchers from the Russell H. Morgan Department of Radiology and Radiological Science at Hopkins demonstrated that choline signals analyzed by MRI were significantly elevated in malignant tumors in 15 of 18 patients studied. Three of the cases could not be included because of technical failures such as patient movement or computer failure during the scanning procedure.

The results are published in the December-January issue of the Journal of Magnetic Resonance Imaging.


Scientists have long known that cancers contain elevated levels of choline, a product of membrane synthesis, but the Hopkins study is believed to be the first to demonstrate its value in accurately identifying breast tumors.

MRSI of the breast does not appear likely to be cost-effective as a routine screening tool for breast cancer, but may prove to be a viable, noninvasive alternative to biopsy in cases with positive mammography or clinical breast exam results, says Michael A. Jacobs, Ph.D., the lead researcher for the Hopkins study. "What MRSI does provide is information about the molecular environment of breast tumors, which also may be useful in designing therapeutic interventions for patients."

Proton magnetic resonance imaging uses the water content in tissue to produce images by measuring signals emitted after subjecting the tissue to high magnetic fields, but provides no information on the chemical or molecular aspects of the tissue being imaged. Combining proton MRI with spectroscopy allows the scientists to differentiate intracellular components of the cell and signals emitted by certain biochemicals, such as choline.

In the study, 15 patients who had been referred for MRI evaluation after previous examination had revealed breast tumors underwent regular breast MRI to identify the lesion. These studies were followed by MRSI scanning to determine if choline signals in the tumors could be adequately imaged using spectroscopy. Biopsies performed after the imaging revealed that eight of the tumors were malignant carcinomas and seven were benign. MRSI showed elevated choline levels in all eight of the malignant tumors.

"These data are proof of principle, and strongly suggest that MRSI can serve as an important adjunct to the routine MRI scan that may aid physicians in making a diagnosis of breast cancer," says Jacobs. "We can envision a time when this procedure may even replace the need for biopsy in some cases and provide the basis to follow treatment strategies in certain cases of breast cancer. However, more research is needed to fully understand the potential impact of these findings."


Johns Hopkins Medical Institutions’ news releases are available on an EMBARGOED basis on EurekAlert at http://www.eurekalert.org and from the Office of Communications and Public Affairs’ direct e-mail news release service. To enroll, call 410-955-4288 or send e-mail to bsimpkins@jhmi.edu.

Gary Stephenson | JHMI
Further information:
http://www.hopkinsmedicine.org/Press_releases/2004/03_01_04.html
http://www.hopkinsmedicine.org

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>