Finnish families guide to gene behind abnormal lipid levels and atherosclerosis

Coronary heart disease is the leading cause of death in Western societies. Unfavorable serum lipid levels, high cholesterol, high triglycerides and low high-density lipoprotein (HDL) cholesterol, are well-known risk factors for atherosclerosis and coronary heart disease. Familial combined hyperlipidemia (FCHL), characterized by these changes in patients serum is the most common familial lipid disorder predisposing to coronary heart disease. FCHL is observed in about 20% of coronary heart disease patients under 60 years and the prevalence being 1% to 2% of Western populations. FCHL is a multifactorial lipid disorder caused by several genes and environmental factors. However, its etiology has remained largely unknown, leaving a significant number of affected individuals without proper prevention and care exposed to coronary heart disease.

The Finnish U.S. research team earlier reported the location of the FCHL gene on chromosome 1q (Pajukanta et al. Nature Genetics 1998) and has now identified the first major gene for FCHL, the most common hyperlipidemia predisposing to coronary heart disease (Pajukanta, Nature Genetics 2004).

The hyperlipidemia gene encodes the upstream transcription factor 1 (USF1) that regulates several genes participating in glucose and lipid metabolism. Since the same chromosome 1q21 region has also been linked to type 2 diabetes mellitus (T2DM) in numerous studies, it raises the possibility that the USF1 gene may explain the molecular background of not only hyperlipidemias but also the metabolic syndrome and type 2 diabetes. The study was performed by research groups lead by Professors Leena Peltonen, Paivi Pajukanta, Christian Ehnholm, Marja-Riitta Taskinen and Markku Laakso in the National Public Health Institute of Finland, in the University of California, Los Angeles (UCLA), USA, and in the Universities of Helsinki and Kuopio, Finland.

The discovery of the genetic basis for FCHL and its component traits (high serum total cholesterol, triglycerides and low HDL), will help develop more accurate diagnostic and preventive tools as well as biology-based therapeutic strategies for this common lipid disorder predisposing to coronary heart disease and perhaps also to metabolic syndrome, a growing health problem in Western countries.

Reference: Pajukanta et al. Nature Genetics, April 2004

More information: Leena Peltonen. Tel: 358-9-4744-83939, email: leena.peltonen@ktl.fi

Media Contact

Minna Meriläinen alfa

More Information:

http://www.helsinki.fi/

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors