Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inhibition of insulin-like growth factor receptor-1 as promising anticancer therapeutic

27.02.2004


Scientists report that an unlikely molecule has emerged as an attractive target for development of therapeutics aimed at a diverse spectrum of tumors, including some malignancies that are resistant to conventional therapies. Two studies published online in Cancer Cell demonstrate that the insulin-like growth factor 1 receptor (IGF-1R) is required for the survival of tumor cells and provide direct evidence that inhibition of IGF-R1 using selective small molecules represents a novel potential anticancer treatment.



Extensive studies have suggested that IGF-1R plays a role in the development of human cancers. IGF-1R is present in a broad range of tumor types including multiple myeloma, lymphoma, leukemia, and breast, lung, prostate, and colon cancers. However, IGF-1R has not been viewed as a likely target for cancer therapeutics because many normal cells also contain the protein. Research scientists from Dana-Farber Cancer Institute in Boston and Novartis Institutes for Biomedical Research Basel demonstrate that IGF-1R inhibition using a variety of methods had potent antitumor effects against many types of cancer cells grown in the laboratory, including cells that are resistant to conventional cancer therapeutics.

Molecular analyses demonstrated that IGF-1R inhibition impacts multiple intracellular signals related to cell proliferation or tumor development and provides possible mechanisms to explain how IGF-1R inhibition can make tumor cells more sensitive to conventional chemotherapy or other anticancer agents. Perhaps most significantly, IGF-1R suppresses tumor growth, prolongs survival, and enhances the antitumor effect of chemotherapy in clinically relevant mouse models of multiple myeloma and other hematological malignancies. The researchers also identify two small molecules that are selective inhibitors of IGF-1R and are active anticancer agents against tumors that contain IGF-1R. These small molecules represent highly attractive potential therapeutics.


According to study author Dr. Constantine S. Mitsiades of Dana-Farber, "These results suggest that IGF-1R function is critically required for tumor cell survival, but dispensable for survival of normal cells in adult animals. The preclinical activity of IGF-1R inhibitors against a broad spectrum of tumor cells and, importantly, their ability to sensitize tumor cells to a wide range of anticancer agents, highlight the major role of IGF-1R signaling for human malignant cells, and suggest that the molecular pathway of IGF-1R is an attractive potential target for development of anticancer therapeutics."


Constantine S. Mitsiades, Nicholas S. Mitsiades, Ciaran J. McMullan, Vassiliki Poulaki, Reshma Shringarpure, Masaharu Akiyama, Teru Hideshima, Dharminder Chauhan, Marie Joseph, Towia A. Libermann, Carlos Garcia-Echeverria, Mark A. Pearson, Francesco Hofmann, Kenneth C. Anderson Andrew L. Kung: "Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies and solid tumors"

Carlos García-Echeverría, Mark A. Pearson, Andreas Marti, Thomas Meyer, Juergen Mestan, Johann Zimmermann, Jiaping Gao, Josef Brueggen, Hans-Georg Capraro, Robert Cozens, Dean B. Evans, Doriano Fabbro, Pascal Furet, Diana Graus Porta, Janis Liebetanz, Georg Martiny-Baron, Stephan Ruetz, Francesco Hofmann: "In vivo anti-tumour activity of NVP-AEW541 - A novel, potent and selective inhibitor of the IGF-IR kinase"

Published online 26 February 2004; Cancer Cell, Volume 5, Number 3, March 2004.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com/

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>