Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibiotic provides promise in treatment of spinal cord injuries

25.02.2004


Treatment prevents later-stage tissue loss contributing to long-term injury



Researchers at Brigham and Women’s Hospital (BWH) and Children’s Hospital Boston (CHB) have found that a commonly prescribed antibiotic could be used to help prevent paralysis and other long-term functional deficits associated with a partial spinal cord injury (SCI). Researchers in the field have known that a significant proportion of paralysis and long-term functional disorders associated with SCI are triggered by post-trauma tissue loss. Administering the antibiotic, minocycline, to rats within the first hour after a paralyzing injury has been shown to reduce this tissue loss and ultimately enable more hind-leg function, the ability to walk with more coordination, better foot posture and stepping, and better support of body weight than untreated controls. The findings are published in the March 2, 2004 issue of the Proceedings of the National Academy of Sciences.

The BWH/CHB researchers found that minocycline reduces later-stage tissue loss by blocking release of a protein known as mitochondrial cytochrome c. Yang D. Teng, MD, PhD, of the joint BWH/CHB neurosurgery program and co-lead author of the study, notes that other experimental agents can prevent later-stage tissue loss, but must be given immediately after or even before SCI to be effective. "The field has badly needed to develop a drug that could be used in a practical manner," said Teng.


According to the National Spinal Cord Injury Association, approximately 250,000 to 400,000 individuals in the United States currently have spinal cord injuries with more than 11,000 individuals each year impacted by a spinal cord injury. Ninety percent of these injuries are partial – meaning that the spinal cord is damaged but not severed, as in the current study.

"These research results are exciting in that they demonstrate a novel post-trauma strategy in the form of a safe, FDA-approved drug that could serve as a prototype drug for developing better therapeutic strategies to improve quality of life for people suffering from spinal cord injuries," said Teng, also an assistant professor of Surgery at Harvard Medical School (HMS).

The steroid methylprednisolone is currently used for SCI in clinical practice, but is falling into disfavor because of severe side effects. Minocycline, a well-known neuroprotector that is currently being tested to treat stroke, ALS, Huntington’s disease and head trauma, has no observable side effects in the rat model and can be given for up to an hour after SCI, providing a more realistic timeframe for clinical use.

"We believe that if minocycline is demonstrated effective in clinical trials of SCI, it will likely be part of a comprehensive cocktail of medications targeting the acute and chronic injuries of this devastating disease," said Robert M. Friedlander, MD of BWH, HMS associate professor of Neurosurgery and co-lead author of the study. "Because minocycline has already been proven as an effective neuroprotector and is capable of penetrating the blood-brain barrier, we believe that it may become the next-generation therapy for treating SCI."

Also collaborating in this study was the VA Boston Healthcare System, where Teng is director of spinal cord injury research.


###
BWH is a 725-bed nonprofit teaching affiliate of Harvard Medical School and a founding member of Partners HealthCare System, an integrated health care delivery network. Internationally recognized as a leading academic health care institution, BWH is committed to excellence in patient care, medical research, and the training and education of health care professionals. The hospital’s preeminence in all aspects of clinical care is coupled with its strength in medical research. A leading recipient of research grants from the National Institutes of Health, BWH conducts internationally acclaimed clinical, basic and epidemiological studies.

Children’s Hospital Boston is home to the world’s largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults for more than 130 years. More than 500 scientists, including seven members of the National Academy of Sciences, nine members of the Institute of Medicine and nine members of the Howard Hughes Medical Institute comprise Children’s research community. Children’s is the primary pediatric teaching affiliate of Harvard Medical School. For more information about the hospital visit: www.childrenshospital.org

Susan Craig | EurekAlert!
Further information:
http://www.childrenshospital.org

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>